Skip to main content

Resilience and urban design

In this article, inspired by the movement of open spaces in cities across the world and resilience theory [1], Shima Beigi argues that city and human resilience are tightly interlinked and it is possible to positively influence both through utilising the transformative power of open spaces in novel ways.

Human resilience makes cities more resilient


Future cities provide a fertile ground to integrate and synthesise different properties of space and help us realise our abilities to become more resilient. Rapid urbanisation brings with it a need to develop cohesive and resilient communities, so it is crucial to discuss how we can better design our cities. In the future, urban design must harness the transformative function of open spaces to help people explore new sociocultural possibilities and increase our resilience: resilient people help form the responsible citizenry that is necessary for the emergence of more resilient urban systems.

Cities are complex adaptive systems


Cities are complex adaptive systems which consist of many interacting parts with different degrees of flexibility, and open urban spaces hold the potential for embedding flexible platforms into future urban design; they invoke the possibility of adopting a different set of values and behaviours related to our cities, such as flexible structures designed to change how we imagine the collective social space or intersubjective space.

Transportation grids are for functional movement and coordination in cities, but open spaces can be seen as avenues for personal growth and development, social activities, learning, collective play and gaming (figure 1). They help us adjust and align our perception of reality in real-time and for free. All we need is our willingness to let go of the old and allow the new to guide us toward evolution, transcendence and resilience.

Figure 1: Boulevard Anspach, Belgium, Brussels. Images credit Shima Beigi

Open spaces also encourage another important process: the emergence of a fluid sense of one’s self as an integral part of a city’s design. Urban design can help citizens feel invited to explore and unearth parts of the internal landscape.

Mindfulness engineering and the practice of resiliencing


Drawing on my research on resilience of people, places, critical infrastructure systems and socio-ecological systems, I have collected 152 different ways of defining resilience and here I propose an urban friendly view of resilience:
"resilience is about mastering change and is a continuous process of becoming and expanding one’s radius of comfort zone until the whole world becomes mapped into one’s awareness".
In this view, our continuous exposure to new conditions helps us align with a new tempo of change. Resilience is naturally embedded in all of us and we need to find those key principles and pathways through which we can practise our natural potential for resilience and adaptability to change on a daily basis. This is what I call 'mindfulness engineering' and the practice of 'resiliencing'. There is no secret to resilience; Ann S. Masten even calls it an 'ordinary magic'.

Building resilient and sustainable cities


Future cities provide us with the opportunity to increase our resilience. There is no fixed human essence and we are always in the state of dynamic unfolding. So the paradox for the future is this: the only thing fixed about the future is a constant state of change. As existential philosopher Søren Kierkegaard said, “the only thing repeated is the impossibility of repetition.” It is only through this shift of perspective to becoming in tune with one’s adaptation and resilience style that we can change our mental models and become better at handling change.

Footnote

[1] The movement of resilience as the capacity to withstand setbacks and continue to grow started in early 70s. Today, the concept of resilience has transformed to a platform for global conversation on the future of human development across the world.

------------------------------
This blog is by Cabot Institute member Dr Shima Beigi from the University of Bristol's Faculty of Engineering.  Shima's research looks at the Resilience and Sustainability of Complex Systems.

Shima Beigi
This blog has been republished with kind permission from the Government Office for Science's Future of Cities blog.  View the original blog.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos