Skip to main content

Professor Dame Julia Slingo: Modelling climate risk

Dame Julia Slingo DBE collects her Cabot Institute
Distinguished Fellowship award from Cabot Institute
Director, Prof Rich Pancost.
Image credit: Amanda Woodman-Hardy
When Professor Dame Julia Slingo visited the Cabot Institute last week, her message was clear: We need to look at climate risk in real world contexts.

Dame Julia was in the city to receive a Cabot Institute Distinguished Fellowship, which involved giving a talk about her work as a world leading meteorologist and Chief Scientist at the Met Office.

One of the first things she highlighted was that climate change isn’t isolated from other pressures like population growth and limited resources, so we need to understand the risks it poses in a real world context. We need to define the effects it may have on the security of food, water, health and energy around the world, and use the science as a guide to define an evidence-based and cost effective plan of action going forward. This, she said, is “one of the greatest challenges of the 21st century”.

Are we making extreme weather worse?

Today, the huge global population boom is putting an ever increasing strain on limited resources like land and water, which are also at risk from the cyclical climate variations that occur naturally. The big and controversial question is whether climate change caused by human activity has exacerbated the problem.

Dame Julia described an annual report produced by the American Meteorological Society (AMS) that analyses extreme weather events around the world each year, aiming to determine whether the effects were magnified by anthropogenic climate change. As she pointed out, it is important that we recognise that not every bit of bad weather can be attributed to climate change, however the AMS often do find that we have played a role in making the situation worse.

Image: Hurricane Sandy killed 233 people and caused over $68 billion worth of damages

One example she picked out was 2012’s Hurricane Sandy, which killed 233 people across eight countries in central and north America. The AMS report found that if sea level had been at the level that it was 50 years ago, the devastating effects of the storm would not have been as bad. It also suggested that continuing on our current path of climate change will mean minor storms will have increasingly severe impacts, leading to Sandy-level hurricanes more frequently in the future.

“We need a more nuanced discussion”

Last year was the warmest on UK record, making a total of 8 out of 10 of our hottest years having occurred since 2002. While of course there is variability in our climate from year to year and even decade to decade, intricate scientific climate models have shown that these record-breaking UK temperatures are made ten times more likely due to anthropogenic climate change.
Image: Low lying islands like the Marshall Islands in the Pacific Ocean are threatened by sea level rise.

While we may prefer a hot summer, temperatures don’t change uniformly across the entire planet. Worryingly, the Arctic is warming twice as fast as the rest of the planet, leading to a huge decrease in the amount of sea ice cover and corresponding sea level rise, which is already threatening communities living on low lying islands. Dame Julia reminded us all that it’s not as simple as trying to prevent a 2°C global temperature increase. The danger that climate change poses depends on who you are and where you live, and we need models to show what the risks will be.

Predicting climate risk

So how can we predict what the effects of climate change will be across the world? It begins with having a sophisticated model of the current global system. The Met Office has led decades of climate modelling, producing incredibly sophisticated simulations of climate systems on both short term (weather) and long term (climate change) scales.

I was absolutely amazed by the intricacy of these models. Millions of lines of computer code recreate the true physical nature of the planet, to the extent where large scale meteorological patterns like El Niño are emergent properties of the model, that is to say that they are a result of the basic physics encoded in the model, rather than being specifically programmed into it.

By altering the model with new data taken from the present extent of climate change or its predicted level in the future, the Met Office can model the global response at incredible resolution, showing the specific risks posed with increasingly detailed clarity (while still incorporating the inherent uncertainties present in all models). These models can then be used to test potential mitigation approaches and of course inform the global communities of the dangers they face.

What can we do?

Dame Julia explained that her role as Chief Scientist is to determine the needs of the people around the world, their risk tolerance and the information they require to make their own decisions. Science, she says, has a lot to offer in enabling governments to make wise, informed and efficient decisions with how best to spend their funds within the wider context of other societal issues, upholding the global securities of food, water, health and energy for the future.


Flooded Pakistan

Image: “There is no evidence to counter the basic premise that a warmer world will lead to more intense daily and hourly rain events” – Professor Dame Julia Slingo

----------------------------------------
This blog is written by Cabot Institute member Sarah Jose, Biological Sciences, University of Bristol.

Sarah Jose

Comments

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…