Skip to main content

Is benchmarking the best route to water efficiency in the UK’s irrigated agriculture?

Irrigation pump. Image credit Wikimedia Commons.
From August 2015 to January 2016, I was lucky enough to enjoy an ESRC-funded placement at the Environment Agency. Located within the Water Resources Team, my time here was spent writing a number of independent reports on behalf of the agency. This blog is a short personal reflection of one of these reports, which you can find here. All views within this work are my own and do not represent any views, plans or policies of the Environment Agency. 

Approximately 71% of UK land (17.4 million hectares) is used for agriculture - with 9.3 million hectares (70%) of land in England used for such operations. The benefits of this land use are well-known - providing close to 50% of the UK’s food consumption.  Irrigated agriculture forms an important fulcrum within this sector, as well as contributing extensively to the rural economy. In eastern England alone, it is estimated that 50,000 jobs depend upon irrigated agriculture – with the sector reported to contribute close to £3 billion annually to the region’s economy.

It is estimated that only 1-2% of the water abstracted from rivers and groundwater in England is consumed by irrigation. When compared to the figures from other nations, this use of water by agriculture is relatively low.  In the USA, agricultural operations account for approximately 80-90% of national consumptive water use. In Australia, water usage by irrigation over 2013/14 totalled 10,730 gigalitres (Gl) – 92% of the total agricultural water usage in that period (11,561 Gl).

However, the median prediction of nine forecasts of future demand in the UK’s agricultural sector has projected a 101% increase in demand between today and 2050. In this country, irrigation’s water usage is often concentrated during the driest periods and in the catchments where resources are at their most constrained. Agriculture uses the most water in the regions where water stress is most obvious: such as East Anglia. The result is that, in some dry summers, agricultural irrigation may become the largest abstractor of water in these vulnerable catchments.

With climate change creating a degree of uncertainty surrounding future water availability across the country, it has become a necessity for policy and research to explore which routes can provide the greatest efficiency gains for agricultural resilience. A 2015 survey by the National Farmers Union  found that many farmers lack confidence in securing long term access to water for production - with only a third of those surveyed feeling confident about water availability in five years’ time. In light of this decreasing availability, the need to reduce water demand within this sector has never been more apparent.

Evidence from research and the agricultural practice across the globe provides us with a number of possible routes. Improved on-farm management practice, the use of trickle irrigation, the use of treated wastewater for irrigation and the building of reservoirs point to a potential reduction in water usage.

Yet, something stands in the way of the implementation of these schemes and policies that support them: People. The adoption of new practices tends to be determined by a number of social factors – depending on the farm and the farmer. As farmers are the agents within this change, it is important to understand the characteristics that often guide their decision-making process and actions in a socio-ecological context.

Let’s remember, there is no such thing as your ‘average farmer’. Homogeneity is not a word that British agriculture is particularly aware of. As a result, efforts to increase water use efficiency need to understand how certain characteristics influence the potential for action. Wheeler et al. have found a number of characteristics that can influence adaptation strategies. For example, a farmer with a greater belief in the presence of climate change is more likely to adopt mitigating or adaptive measures. Importantly, this can also be linked to more-demographic factors. As Islam et al. have argued, risk scepticism can be the result of a number of factors (such as: age, economic status, education, environmental and economic values) and that these can be linked to the birth cohort effect.

This is not to say that all farmers of a certain age are climate-sceptics but it does point to an important understanding of demography as a factor in the adoption of innovative measures. Wheeler et al. went on to cite variables of environment values, commercial orientation, perceptions of risk and the presence of an identified farm successor as potentially directing change in practice . Research by Stephenson has shown that farmers who adopt new technologies tend to be younger and more educated, have higher incomes, larger farm operations and are more engaged with primary sources of information.

Yet, there is one social pressure that future policy must take into account – friendly, neighbourly competition. Keeping up with the Joneses. Not wanting Farmer Giles down the lane knowing that you overuse water in an increasingly water-scarce future. This can be harnessed within a system of benchmarking. Benchmarking involves the publication of individual farm’s water use, irrigation characteristics and efficiency and farming practice. Although data is supplied anonymously, individual farmers will be able to see how they measure up against their neighbours, competitors and others elsewhere.

Benchmarking is used in other agricultural sub-sectors. A 2010 survey found that 24% of farmers from different sectors used benchmarking in their management processes. This is particularly evident in the dairy sector, where both commercial and public organisations use the methods as a way to understand individual farm performance – an important example of this would be DairyCo’s Milkbench+ initiative. In 2004, over 950,000 hectares of irrigated land in Australia, 385,000 hectares in China and 330, 000 hectares in Mexico were subjected to benchmarking processes as a mean to gauge their environmental, operational and financial characteristics.

The result is that irrigators would have the means to compare how they are performing relative to other growers – allowing the answering of important questions of ‘How well am I doing?’ ‘How much better could I do?’ and ‘How do I do it?’ Furthermore, this route can be perceived as limiting the potential for ‘free-riding’ behaviour within a catchment as well emphasise the communal nature of these vulnerable resources. We’ve all seen ‘Keeping up with the Joneses’ result in increased consumption – benchmarking provides us with an important route to use this socialised nudging for good.
--------------------------------------------------------------
This blog is written by Cabot Institute member Ed Atkins, a PhD student at the University of Bristol who studies water scarcity and environmental conflict.


Ed Atkins

Comments

  1. Hard water treatment methods are grouped into four categories depending on how they work. They all reduce, inhibit or eliminate limescale and each method has its own advantages and disadvantages.water tie in Massachusetts

    ReplyDelete

Post a Comment

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…