Skip to main content

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts.



‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this:
‘1-in-200 year magnitude is x’ = ‘the current rate for events with magnitude at least x is 1/200 /yr’.

Statisticians and risk communicators strongly deprecate the use of ‘1-in-200’ and its ilk.

First, it gives the impression, wrongly, that the forecast is expected to hold for the next 200 years, but it is not: 0.005 /yr is our assessment of the current rate, and this could change next year, in response to more observations or modelling, or a change in the environment.

Second, even if the rate is unchanged for several hundred years, 200 yr is the not the average waiting time until the next large-magnitude event. It is the mathematical expectation of the waiting time, which is a different thing. The average is better represented by the median, which is 30% lower, i.e. about 140 yr. This difference between the expectation and the median arises because the waiting-time distribution has a strong positive skew, so that lots of short waiting-times are balanced out a few long ones. In 25% of all outcomes, the waiting time is less than 60 yr, and in 10% of outcomes it is less than 20 yr.

So to use ‘1-in-200 year’ in public discourse is very misleading. It gives people the impression that the event will not happen even to their children’s children, but in fact it could easily happen to them. If it does happen to them, people will understandably feel that they have been very misled, and science and policy will suffer reputational loss, which degrades its future effectiveness.

So what to use instead? 'Annual rate of 0.005 /yr' is much less graspable than its reciprocal, '200 yr'. But ‘1-in-200 year’ gives people the misleading impression that they have understood something. As Mark Twain said “It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.” To demystify ‘annual rate of 0.005 /yr’, it can be associated with a much larger probability, such as 0.1 (or 10%). So I suggest ‘event with a 10% chance of happening in the next 20 yr’.

Blog post by Prof. Jonathan Rougier, Professor of Statistical Science.

First blog in series here.

Third blog in series here.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

Detectable impacts of Climate Change in the UK; a new review for the next Climate Change Risk Assessment

2022 was another year of “unprecedented” weather. Provisional figures indicate that it was the warmest so far recorded, with almost every month hotter than average. Much of the country had a notably mild New Year, despite the cold snap in mid-December. This was preceded by the third warmest autumn on record , and that by a scorching summer, with the hottest day ever recorded in July. But summer’s heat waves were also accompanied by a rise in the number of daily deaths across the country. People around the world are becoming increasingly more aware of events like these, and their impact in the UK is particularly concerning amidst the ongoing cost-of-living, energy, and NHS crises. Aerial view of the Wennington wildfire, London, 19 July 2022. Source: Harrison Healey, Wikimedia Commons  (CC BY 3.0). Ahead of the Fourth UK Climate Change Risk Assessment (CCRA4), the Climate Change Committee (CCC) are asking what we know about the impact of past and present climate change on natural and