Skip to main content

Four ways winter heatwaves affect humans and nature

Temperature anomaly in Europe, Jan 1. Much of the continent was 10°C or more (dark red and grey) above the long-term average. WX Charts, CC BY-NC

An extreme winter heatwave meant countries across Europe experienced a record-breaking New Year’s Day. New daily temperature records for the month of January were set in at least eight countries: Belarus, Czechia, Denmark, Latvia, Liechtenstein, Lithuania, Netherlands and Poland.

In many cases the temperatures were not just breaking the old highs, but smashing them by massive margins. On a typical January day in Warsaw, Poland, temperatures would barely go above freezing, yet the city recently experienced 19℃, breaking the previous January high by 5.1℃.

New January records were set at thousands of individual stations in many other countries such as 25.1℃ at Bilbao airport in Spain, 0.7℃ hotter than the previous record set only last year. Large areas of central and Eastern Europe experienced temperatures 10℃ to 15℃ warmer than average for this time of year – and that has persisted through the week.

When Europe experienced extreme heat in July of last year, more than 20,000 died. Fortunately winter heatwaves are much less deadly, but they can still affect both human society and natural ecosystems in many ways.

1. Less energy is needed

In Europe deaths due to cold weather vastly outweigh those caused by extreme high temperatures – in the UK there are ten times more. Warmer winters will reduce this excess mortality and, with the current cost-of-living crisis, many will have been relieved that a heatwave meant less energy was needed to heat their homes.

Electricity demand is influenced by things like the time of day, the day of the week and socio-economic factors like the COVID pandemic or the war in Ukraine. The weather also makes a difference. For example, in Poland and the Netherlands demand was noticeably lower than average, especially since January 1 was a Sunday. The extent of the heatwave also meant countries could refill some of their winter gas reserves, or large batteries.

Energy consumption in Poland December 28 to January 5. The red line shows the 2022-2023 heatwave period, and the grey lines show available data from 2015-2022. Hannah Bloomfield / data: transparency.entsoe.eu, Author provided

2. Reduced yields for some crops

Winter warm spells don’t always have such a positive impact though. For instance a lack of snow in the mountains affects agriculture and can reduce crop yield, since snow creates an insulating blanket that prevents frost from penetrating into the soil. This means snow can actually increase soil moisture more than rainfall, thus improving growing conditions later in the season.

The big snow melt in spring time replenishes reservoirs and allows hydroelectricity generation, but unexpected snow melt can lead to flooding. Changes to the timings of these events will require preparation and adaptation to enable a steady supply of water to where we need it.

Warmer temperatures will create longer growing seasons in many regions. This is not always the case though. A recent study showed that for alpine grasslands an earlier growing season (the point when snow has melted entirely) leads to ageing and browning of the grasses in the later part of the summer.

3. The snow economy is in trouble

The heatwave caused ski resorts across the Alps to close in what should be their busiest time of year. In January the slopes would be expected to have a good covering of snow – but instead we saw green grassy fields.

This hits the local economy where many people rely on winter sports tourism. Events such as the Adelboden alpine ski World Cup are relying on artificial snow, which comes with a further environmental cost increasing the carbon footprint of ski resorts and requiring a large water supply. Indeed, the Beijing winter Olympics used the equivalent of daily drinking water for 900 million people to generate the artificial snow it required.

4. Animals out of sync with the climate

We humans are perhaps fortunate, as we are able to adapt. Some ski resorts have already opened mountain bike trails in winter to offer alternative tourism, but wildlife and ecosystems cannot adjust so rapidly.

In the mountains many species, such as ptarmigan and mountain hares, change their colouring for winter to camouflage in the white snow. The timing of this change is determined by length of day – not the temperature or amount of snow. These creatures are at greater risk of being preyed on when it is warmer.

White rabbit, brown background
Mountain hares are dressed for a climate that has changed. Mark Medcalf / shutterstock

Over the past century heat extremes in Europe have increased in intensity and frequency. Both the general warming and heatwave events have been firmly attributed to humans.

Future projections suggest these trends will continue and heatwaves in both summer and winter will get hotter, last longer, and occur more often. We need to learn to adapt for these changes in all seasons and think about the impacts on everyone – and everything – on our planet.The Conversation

----------------------------

This blog is written by Cabot Institute for the Environment members Dr Vikki Thompson, Senior Research Associate in Geographical Sciences, University of Bristol and Dr Hannah Bloomfield, Postdoctoral Researcher in Climate Risk Analytics, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Vikki Thompson
Hannah Bloomfield

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and ...