Cabot Institute blog

Find out more about us at www.bristol.ac.uk/cabot

Tuesday, 31 May 2016

Getting ready to go… cassava virus hunting!

Katherine Tomlinson from the School of Biological Sciences at the University of Bristol Cabot Institute, is spending three months in Uganda looking at the cassava brown streak virus. This virus dramatically reduces available food for local people and Katherine will be finding out how research on this plant is translating between the lab and the field.  Follow this blog series for regular updates.

It’s just three days until I set off on my trip to Uganda, where I’ll complete an internship with the National Crops Resources Research Institute in Namulonge. I’ll be working for three months with their Communications team to learn how research is translated between the lab and the field.  I am currently a BBSRC South West DTP PhD student at the University of Bristol, researching how cassava brown streak disease viruses spoil cassava tubers and dramatically reduce available food for local people.

Image above shows Katherine inspecting cassava plants for cassava brown streak disease symptoms in the School of Biological Sciences GroDome.
Cassava plants produce carbohydrate rich root tubers and are a staple food crop for approximately 200 million people in sub-Saharan Africa. After rice and maize, cassava is the third most important source of carbohydrates in the tropics. Unfortunately, cassava is prone to viral infections, including cassava brown streak disease (CBSD), which can render entire tubers inedible. CBSD outbreaks are currently impacting on the food security of millions of cassava farmers in east Africa; it appears to be spreading westward, threatening food security in many countries.

Spoiled cassava tubers due to cassava brown streak disease (photo credit: Dr. E. Kanju, IITA).
Working the lab, I regularly infect plants with CBSD viruses to study how they replicate, move and prevent plant defence responses. However, in the field there is a much more complex interplay of different viral strains, cassava varieties, white fly population dynamics and environmental conditions which all contribute towards the disease. It’s vitally important that information about all of these contributory factors is shared between scientists and farmers to help control the disease and inform future research.

I’m looking forward to assisting with field trials where different cassava varieties are being tested for resistance and meeting the farmers who face the challenges of controlling the disease. I hope to learn how information is shared and distributed and get some research ideas for when I return. I’ll be blogging my experiences on my personal blog and for the Cabot Institute blog.

NaCRRI is in Namulonge, in the Wakiso district of Uganda (photo credit: Slomox, Wikimedia).

Preparation, preparation, preparation…


At the moment, there are a lot of ‘to do’s; making sure I’ve had all the necessary vaccinations, packed factor 50 sun cream, mosquito net, DET and a massive first aid kit! It seems a little over the top at the moment but should stand me in good stead for the adventure ahead…

-----------------------------------
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie's area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie's blog Cassava Virus

Katie Tomlinson
More from this blog series:  

Tuesday, 17 May 2016

From the depths of a PhD to the heights of the Royal Society: my first month…

The Royal Society
Back in autumn 2015 I applied for an RCUK Policy Internship. At first I was hesitant. Would it mean time lost in data collection for my PhD? Would I fall behind? And would it actually be useful for me beyond the PhD?

Well, the internship is only three months long, and due to it being RCUK-funded I get an extra three months added onto my PhD deadline. So no time lost!  Another thing that swayed me was the opportunity to broaden my horizons and gain lots of skills that I wouldn’t  have had the opportunity to gain while slogging away at the PhD.

Coming from an AHRC-funded PhD, I had the choice of internships with a whole host of organisations including the British Museum, British Library, the Society of Biology, Government Office for Science (GO-Science) and the Parliamentary Office for Science and Technology (POST). With my interests in archaeology (geophysics, soil science, geochemistry), agriculture, new technologies, the environment, and the role of strong independent science advice, I decided to go for the Royal Society, the UK’s national science academy.

At the beginning of March 2016 I arrived at Carlton House Terrace, London, to dig deeper into what strong science policy advice actually is, and how the Royal Society’s Science Policy Centre provides it.

What I've learnt


Science policy advice is about communicating new and existing science to decision makers. Decision makers often lack technical expertise or awareness in some of the areas they cover, thus it’s crucial that they can access good advice from the people closer to the research. Decision making and policy advice also both have a crucial time component which can make or break whether advice is well received and useful, or wasted and forgotten. The challenge is to provide excellent and authoritative advice in a flexible and timely manner amongst an ocean of other competing priorities and other advisors trying to do the same thing.

The Royal Society’s Science Policy Centre is a key player in providing strong independent advice, drawn from experts in all areas of science. Experts come from not only the 1645 Fellows and Foreign members of the Society, but also from all relevant fields of research in academia and industry.

In my first month here I've experienced a fast-paced and engaging workplace, with a mix of great people  from a whole variety of different backgrounds. Unlike the PhD, work here has to cover huge topic areas such as energy, environment and climate change. These topics are immensely unwieldy but it’s essential that you  can get up to speed on current and future issues as well as the past dynamics of these topic areas to be able to understand the science and policy demands.

The other interesting side to this work is understanding the wider landscape of these topic areas. It’s not just about considering how academic research can be communicated to decision makers, but also how research feeds into a much wider process that policy needs to cover. How will decisions made affect the private sectors? How do policies impact people and the environment through space and time? Crucially how ‘successful’ are policies and what will policies of the future look like?

Stay tuned


It is an exciting time and so far shaping up to be a great experience! I will be writing a post for each month spent at the Society so look forward to more on horizon scanning techniques, prioritisation, and values within science!

(Views in this blog post are my own and do not represent those of the Royal Society.)
------------------------------
This blog is by Cabot Institute member Henry Webber, from the School of Arts at the University of Bristol.  His research focusses on the integration of archaeology and precision farming.
Henry Webber


Wednesday, 11 May 2016

Why we need to tackle the growing mountain of 'digital waste'

Image credit Guinnog, Wikimedia Commons.
We are very aware of waste in our lives today, from the culture of recycling to the email signatures that urge us not to print them off. But as more and more aspects of life become reliant on digital technology, have we stopped to consider the new potential avenues of waste that are being generated? It’s not just about the energy and resources used by our devices – the services we run over the cloud can generate “digital waste” of their own.

Current approaches to reducing energy use focus on improving the hardware: better datacentre energy management, improved electronics that provide more processing power for less energy, and compression techniques that mean images, videos and other files use less bandwidth as they are transmitted across networks. Our research, rather than focusing on making individual system components more efficient, seeks to understand the impact of any particular digital service – one delivered via a website or through the internet – and re-designing the software involved to make better, more efficient use of the technology that supports it.

We also examine what aspects of a digital service actually provide value to the end user, as establishing where resources and effort are wasted – digital waste – reveals what can be cut out. For example, MP3 audio compression works by removing frequencies that are inaudible or less audible to the human ear – shrinking the size of the file for minimal loss of audible quality.

This is no small task. Estimates have put the technology sector’s global carbon footprint at roughly 2% of worldwide emissions – almost as much as that generated by aviation. But there is a big difference: IT is a more pervasive, and in some ways more democratic, technology. Perhaps 6% or so of the world’s population will fly in a given year, while around 40% have access to the internet at home. More than a billion people have Facebook accounts. Digital technology and the online services it provides are used by far more of us, and far more often.

It’s true that the IT industry has made significant efficiency gains over the years, far beyond those achieved by most other sectors: for the same amount of energy, computers can carry out about 100 times as much work as ten years ago. But devices are cheaper, more powerful and more convenient than ever and they’re used by more of us, more of the time, for more services that are richer in content such as video streaming. And this means that overall energy consumption has risen, not fallen.

Some companies design their products and services with the environment in mind, whether that’s soap powder or a smartphone. This design for environment approach often incorporates a life-cycle assessment, which adds up the overall impact of a product – from resource extraction, to manufacture, use and final disposal – to get a complete picture of its environmental footprint. However, this approach is rare among businesses providing online digital services, although some make significant efforts to reduce the direct impact of their operations – Google’s datacentres harness renewable energy, for example.

It may seem like data costs nothing, but it how software is coded affects the energy electronics consumes. 3dkombinat/shutterstock.com

We were asked to understand the full life-cycle cost of a digital operation by Guardian News and Media, who wanted to include this in their annual sustainability report. We examined the impact of the computers in the datacentres, the networking equipment and transmission network, the mobile phone system, and the manufacture and running costs of the smartphones, laptops and other devices through which users receive the services the company provides.

In each case, we had to determine, through a combination of monitoring and calculation, what share of overall activity in each component should be allocated to the firm. As a result of this, Guardian News and Media became the first organisation to report the end-to-end carbon footprint of its digital services in its sustainability report.

But what design approaches can be used to reduce the impact of the digital services we use? It will vary. For a web search service such as Google, for example, most of the energy will be used in the datacentre, with only a small amount transmitted through the network. So the approach to design should focus on making the application’s software algorithms running in the datacentre as efficient as possible, while designing the user interaction so that it is simple and quick and avoids wasting time (and therefore energy) on smartphones or laptops.

On the other hand, a video streaming service such as BBC iPlayer or YouTube requires less work in the datacentre but uses the network and end-user’s device far more intensively. The environmental design approach here should involve a different strategy: make it easier for users to preview videos so they can avoid downloading content they don’t want; seek to avoid digital waste that stems from sending resource-intensive video when the user is only interested in the audio, and experiment with “nudge” approaches that provide lower resolution audio/video as the default.

With the explosive growth of digital services and the infrastructure needed to support them it’s essential that we take their environmental impact seriously and strive to reduce it wherever possible. This means designing the software foundations of the digital services we use with the environment in mind.
----------------------------
This blog is written by University of Bristol Cabot Institute member Chris Preist, Reader in Sustainability and Computer Systems.
Chris Preist

This article was originally published on The Conversation. Read the original article.