Skip to main content

Learning lessons from Fukushima

When disasters happen scientists pretty much have a duty to try to understand what happened and why, and to try to learn the lessons. This week the catastophist Gordon Woo of Risk Management Solutions gave a seminar here at the Cabot Institute and suggested that the question that we should really ask is not "why did this happen?" but "why did this not happen before?". This is also one of the ideas that emerged from a recent exercise that we undertook to try to understand the recent events at the Fukushima nuclear power plant in Japan. The range of skills available within Cabot allowed us to take a fundamentally holistic approach to the analysis that wouldn't have been possible for any single individual. The results of the analysis are here, but two main points emerge.

First, there is the need to tackle is "chained" or "cascaded" hazards, which, as very low probability events, have traditionally been treated as independent random events and hence have too low a likelihood of coinciding together. There may be hidden dependencies, which are not always either obvious or intuitive, requiring careful analysis to tease out or recognise. This is particularly the case for complex infrastructure like nuclear power stations.

Second, it is no longer adequate to rely on deterministic assessments of hazards and risks from natural hazards as these cannot account properly for uncertainty. Dealing with uncertainty requires a probabilistic analysis that looks at the full range of possible situations that may arise, not just a single one that a company or regulator has (perhaps somewhat arbitrarily) decided is the 'worst case'. Probabilistic approaches should now be regarded as mandatory, and application of rigorous, structured approaches to assessing risk are needed. Such assessments must include evaluation of all credible alternative models for natural processes, rather than just adopting particular models that happen to support inherited views.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

The Global Goals: How on Earth can geologists make a difference?

Image credit: Geological Society On the 30 th October the Bristol Geology for Global Development (GfGD) group trekked off to London to the grandeur of the Geological Society  for the 3 rd annual GfGD conference . Joel Gill, the director of GfGD, opened the conference with the bold claim: “Probably the world’s first meeting of geologists to discuss the Global Goals.” And it’s not an overstatement. Despite first appearances, geology has a crucially important role to play in many of the 17 goals internationally agreedby World Leaders in September this year . So why aren’t we talking about it? The conference acted as a platform for these discussions, it gave geologists a chance to learn how they can actually contribute to the success of these international development targets and it introduced us to new ways in which geology can help make a difference. . @JoelCGill describing the importance of geology & geologists in meeting UN Sustainable Development Goals #GfGDConf p...

Welcome to our 2020 MScR cohort in Global Environmental Challenges!

September 2020 saw the arrival of the latest cohort on the MScR in Global Environmental Challenges . This year, we have students representing four Faculties, and six Schools; each with a unique independent research project that focuses on some of the most pressing challenges faced today.  With projects ranging from using chemistry to create clean air to artistic expressions of activism in Chile, we are delighted to introduce to you some of our new students below.   Harry Forrester  Can glacial flour stimulate N cycling in croplands? - School of Geographical Sciences  This research involves an investigation of the effects of glacial flour as a stimulant of microbial nitrogen cycling in cropland. Through this study, I aim to establish myself as a well-rounded Biogeochemist and explore interdisciplinary collaborations throughout the academic community. I hope to gain insight into environmental policy making, preparing me to enact effective change.  Lauren Prou...