Skip to main content

Learning lessons from Fukushima

When disasters happen scientists pretty much have a duty to try to understand what happened and why, and to try to learn the lessons. This week the catastophist Gordon Woo of Risk Management Solutions gave a seminar here at the Cabot Institute and suggested that the question that we should really ask is not "why did this happen?" but "why did this not happen before?". This is also one of the ideas that emerged from a recent exercise that we undertook to try to understand the recent events at the Fukushima nuclear power plant in Japan. The range of skills available within Cabot allowed us to take a fundamentally holistic approach to the analysis that wouldn't have been possible for any single individual. The results of the analysis are here, but two main points emerge.

First, there is the need to tackle is "chained" or "cascaded" hazards, which, as very low probability events, have traditionally been treated as independent random events and hence have too low a likelihood of coinciding together. There may be hidden dependencies, which are not always either obvious or intuitive, requiring careful analysis to tease out or recognise. This is particularly the case for complex infrastructure like nuclear power stations.

Second, it is no longer adequate to rely on deterministic assessments of hazards and risks from natural hazards as these cannot account properly for uncertainty. Dealing with uncertainty requires a probabilistic analysis that looks at the full range of possible situations that may arise, not just a single one that a company or regulator has (perhaps somewhat arbitrarily) decided is the 'worst case'. Probabilistic approaches should now be regarded as mandatory, and application of rigorous, structured approaches to assessing risk are needed. Such assessments must include evaluation of all credible alternative models for natural processes, rather than just adopting particular models that happen to support inherited views.

Comments

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…