Skip to main content

Paul F. Hoffman visits the University of Bristol

Paul F Hoffman of Harvard
On the 24th and 25th of September, Professor Paul F Hoffman of Harvard University (USA) kindly offered to visit the University of Bristol for two days. Fresh from fieldwork in Namibia, Paul agreed to give two talks: one upon Cryogenian glaciations and another upon the interaction of climate scientists and geologists.

Snowball Earth - Image from COSMOS
Paul is perhaps most well known for his part in the development of the Snowball Earth theory, suggesting that during the Cryogenian (850 to 635 million years ago) ice covered the entire globe, from the poles to the tropics. This theory is based upon multiple strands of evidence including palaeomagnetics, sedimentology, isotopic analysis and numerical modelling. Paul succinctly summarised these ideas while also discussing some new results published in Science two years ago. The authors of this paper suggest that during the breakup of Rodinia, a proterozoic supercontinent, the eruption of the Franklin Large Igneous Province (LIP) in Canada (716Ma) may have produced a climatic state more susceptible to glaciation. Although there have been many critics of Snowball Earth, it seems Paul remains loyal to the theory.  A wine reception was held afterwards within the School of Geography and allowed for further discussion amongst staff and students.

Paul gave a second talk on 25th September to a selection of PhDs and PDRAs who attend the Climate Journal Club (see below for details). Paul chose to give a more anecdotal, but nonetheless interesting, talk on the co-evolution of climate scientists and geologists during the last 250 years. His talk focused upon the development of a theory: from indifference to hysteria, followed by rejection and then finally acceptance. I asked him where Snowball Earth stands. He replied that it was somewhere in between hysteria and rejection!

Maybe in 50 years time we will know whether Paul was right all along...

For more details, see the following references:

Hoffman, P.F., et al (1998) A neoproterozoic Snowball Earth. Science, 281, 1342
MacDonald, F.A., et al (2010) Calibrating the Crypogenian. Nature, 327, 1241

This blog was written by Gordon Inglis who runs the Climate Journal Club at the University of Bristol. 

For more details on attending the Climate Journal Club (bimonthly event designed to allow PhD and PDRAs to discuss a selection of climate-themed paper), please email


  1. The blog article very surprised to me! Your writing is good related to personal care In this I learned a lot! Thank you!, please checkout more information on Lotus Notes Lotus Notes administrator Consultants


Post a Comment

Popular posts from this blog

Bristol Future’s magical places: Sustainability through the eyes of the community

“What is science? Why do we do it?”. I ask these questions to my students a lot, in fact, I spend a lot of time asking myself the same thing.

And of course, as much as philosophy of science has thankfully graced us with a lot of scholars, academics and researchers who have discussed, and even provided answers to these questions, sometimes, when you are buried under piles of papers, staring at your screen for hours and hours on end, it doesn’t feel very science-y, does it?

 As a child I always imagined the scientist constantly surrounded by super cool things like the towers around Nicola Tesla, or Cousteau being surrounded by all those underwater wonders. Reality though, as it often does, may significantly differ from your early life expectations. I should have guessed that Ts and Cs would apply… Because there is nothing magnificent about looking for that one bug in your code that made your entire run plot the earth inside out and upside down, at least not for me.

I know for myself, I…

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here:
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Dadaism in Disaster Risk Reduction: Reflections against method

Reflections and introductions: A volta The volta is a poetic device, closely but not solely, associated with the Shakespearean sonnet, used to enact a dramatic change in thought or emotion. Concomitant with this theme is that March is a month with symbolic links to change and new life. The Romans famously preferred to initiate the most significant socio-political manoeuvres of the empire during the first month of their calendar, mensis Martius. A month that marked the oncoming of spring, the weakening of winter’s grip on the land and a time for new life.
The need for change Having very recently attended the March UKADR conference, organised by the Cabot Institute here in Bristol, I did so with some hope and anticipation. Hope and anticipation for displays and discussions that conscientiously touched upon this volta, this need for change in how we study the dynamics of natural hazards. The conference itself was very agreeable, it had great sandwiches, with much stimulating discussion …