Skip to main content

Tales from the field: reconstructing past warm climates

The warmest period of the past 65 million years was the early Eocene epoch (55 to 48 million years ago). During this period, the equator-to-pole temperature gradient was reduced and atmospheric carbon dioxide (pCO2) was in excess of 1000ppm. The early Eocene has received considerable interest because it may provide insight into the response of Earth’s climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions (IPCC AR4). However, climatic conditions of the early Eocene ‘greenhouse world’, are poorly constrained, particularly in mid-to-low latitude terrestrial environments (Huber and Caballero, 2011).

I recently spent a week in eastern Germany (Schoeningen, Lower Saxony) sampling an early Eocene lignite seam (Fig. 1). Lignite is a type of soft brown coal that is an excellent terrestrial climate archive. Using palynology, organic geochemistry, coal petrography and climate models, we will try to reconstruct the terrestrial environment of the early Eocene and provide insights into future climate change. 

Fig. 1. A view of the mine with Dr. Volker Wilde on the far right for scale.

During this trip, we were sampling at the base of the mine beside a very large and very dusty bucket-wheel excavator (Fig. 2). A bucket-wheel excavator is a continuous digging machine over 200m long and dwarfs the large NASA Crawler that transports space shuttles to launch pads. Once the lignite is removed, it is placed upon a conveyor belt and transported immediately to a nearby power station. Unfortunately, the Schoeningen lignite will not last forever and the town will have to consider other energy sources (e.g. wind).

Fig. 2. A bucket-wheel excavator at Schoeningen mine.

Our sampling technique was less impressive yet equally effective. All we required were hammers, chisels and pick-axes (Fig. 3.). After a long day of sampling, we were taken to a very special outcrop at the top of the mine. The exposure contained well-reserved palm tree stumps from the early Eocene and provide evidence for white beaches, tropical plants and endless sunshine on the German coastline. An ideal holiday destination!

Fig. 3. Dr. Marcus Badger sampling Main Seam in high resolution.

Following fieldwork we were taken to the new Schoeningen museum containing, amongst other artefacts, the Schoeningen Spears (Fig. 4). The Schoeningen spears are 300,000 years old and are the oldest human weapons in existence. The spears were found with approximately 16,000 animal bones, amongst them 90% were horse bones, followed by red deer and bison. It has been proposed that these spears were the earliest projectile weapons and were used for 'big game hunts'. Although this theory has been questioned, it remains one of the worlds most exciting archaeological finds.

Fig.4. The Schoeningen spears. Most were preserved fully intact.

Now we are back in Bristol its time to start processing our samples so we can understand what the early Eocene terrestrial climate was like. Watch this space!

---------
The trip was in collaboration with members of Bristol (UK), Royal Holloway (UK), Gottingen (Germany) and Senckenberg (Germay).

This blog was written by Gordon Inglis (http://climategordon.wordpress.com).

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and ...