Skip to main content

Weathermen of Westeros: Does the climate in Game of Thrones make sense?

The climate has been a persistent theme of Game of Thrones ever since Ned Stark (remember him?) told us “winter is coming” back at the start of season one. The Warden of the North was referring, of course, to the anticipated shift in Westerosi weather from a long summer to a brutal winter that can last for many years. An unusual or changing climate is a big deal. George R R Martin’s world bears many similarities to Medieval Europe, where changes to the climate influenced social and economic developments through impacts on water resources, crop development and the potential for famine.
We’re interested in whether Westeros’s climate science adds up, given what we’ve learned about how these things work here on Earth.

It’s not easy to understand the mechanisms driving the climate system given we can’t climb into the Game of Thrones universe and take measurements ourselves. It’s hard enough to get an accurate picture of what’s driving the world’s climate even with many thousands of thermometers, buoys and satellite readings all plugging data into modern supercomputers – a few old maesters communicating by raven are bound to struggle.

The fundamental difference between our world and that of Westeros is of course the presence of seasons. Here on Earth, seasons are caused by the planet orbiting around the sun, which constantly bombards us with sunlight. However the amount of sunlight received is not the same throughout the year.


You won’t see this in Westeros. Rhcastilhos


If you imagine the Earth with a long pole through its centre (with the top and bottom of the pole essentially the North and South Pole) and then tilt that by 23.5 degrees, the amount of sunlight received in the Northern and Southern Hemispheres will change throughout the year as the Earth orbits the Sun.

Clearly the unnamed planet on which Game of Thrones is set is missing this axis tilt – or some other crucial part of Earth’s climate system.

How longer seasons might work


The simplest explanation could be linked to spatial fluctuations in solar radiation (sunlight) received at the surface. A reduction in incoming solar radiation would mean more snow and ice likely remaining on the ground during the summer in Westeros’s far north. Compared to the more absorbent soil or rock, snow reflects more of the Sun’s energy back out to space where in effect it cannot warm the Earth‘s surface. So more snow leads to a cooler planet, which means more snow cover on previously snow-free regions, and so on. This process is known as the snow albedo feedback.
The collapse of large ice sheets north of the Wall could also rapidly destabilise ocean circulation, reducing northward heat transport and leading to the encroachment of snow and ice southwards towards King’s Landing.


What if all this ice suddenly melted? HBO

To descend into glacial conditions would require a large decrease in solar radiation received at certain locations on the Earth’s surface and likewise an increase would be needed to return to warmer conditions.

This is roughly what happened during the switches between “glacial” and “interglacial” (milder) conditions throughout the past million years on Earth. This is controlled primarily by different orbital configurations known as “Milankovitch cycles”, which affect the seasonality and location of sunlight received on Earth.

However, these cycles are on the order of 23,000 to 100,000 years, whereas Game of Thrones seemingly has much shorter cycles of a decade or less.

When winter came back


Around 12,900 years ago there was a much more abrupt climate shift, known as the Younger Dryas, when a spell of near-glacial conditions interrupted a period of gradual rewarming after the last ice age peaked 21,000 years ago. The sudden thawing at the end of this cold spell happened in a matter of decades – a blink of an eye in geological terms – and led to the warm, interglacial conditions we still have today.


A particularly long and brutal winter? Younger Dryas
cooling is visible in Greenland ice core records.
 NOAA


Various different theories have tried to explain why this spike occurred, including the sudden injection of freshwater into the North Atlantic from the outburst of North American glacial lakes, in response to the deglaciation, which destabilised ocean circulation by freshening the water and reducing ocean heat transport to the North Atlantic Ocean, cooling the regional climate.
Less likely explanations include shifts in the jet stream, volcanic eruptions blocking out the sun, or even an asteroid impact.

The shift from the Medieval Warm Period to the Little Ice Age that began around 1300 AD represents a more recent, and more subtle, example of a “quick” climate change. Although the overall temperature change wasn’t too severe – a Northern Hemisphere decrease of around 1˚C compared with today – it was enough to cause much harsher winters in Northern Europe.
None of these events indicate the abrupt transitions from long summers to long winters as described in Game of Thrones – and they still all happen on a much longer timescale than a Westeros winter. However they do demonstrate how extreme climate shifts are possible even on geologically short timescales.

Regardless of the causes of the long and erratic seasons, winter in Westeros won’t be much fun. It may even make the struggle for the Iron Throne between the various factions seem irrelevant.
Indeed the House of Stark’s motto: “winter is coming” may have a lesson for us here on Earth. Anthropogenic climate change is one of the biggest challenges facing humankind today and if left unmitigated the potential environmental impact on society may be far greater than any global recession. Stop worrying about the Iron Throne, everyone, winter is coming.
--------------------------------------
The Conversation
This blog has been written by Cabot Institute members Alex Farnsworth, a Postdoctoral Research Assistant in Climatology at University of Bristol and Emma Stone, a Research Associate in Climate History at University of Bristol.

This article was originally published on The Conversation. Read the original article.

Emma Stone
Alex Farnsworth

Comments

Post a Comment

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…