Skip to main content

How Bristol geologists are contributing to international development

Guatamala.  Credit: Geology for Global Development

It maybe isn't immediately obvious how a pet-rock-owning earth scientist is able to change the world; the basement labs in the Wills Memorial Building seem a far cry from fighting global poverty. But the study of geology and having a knowledge of the earth and its resources is actually vitally important for the success of many international development projects.

Geology for global development: what is it all about?


Geology for Global Development (GfGD) is a national organisation that wants to bring awareness to the important position that geologists are in, to be able to make a difference. And it’s not just geologists that are involved here; GfGD recognises that through the collaboration of students from a wide range of disciplines, a positive and effective contribution to development can be made. For example, earth scientists can learn a lot from anthropologists about working alongside different communities whilst being sensitive to cultural differences.

This has been the first year for the GfGD society at Bristol and so far we think it has been a great success. We have held talks covering a whole variety of topics: from volcanic hazards in Guatemala, to sustainably procuring our world’s resources, to an overview of what it is actually like to be working in aid and development as a volunteer. We aim to offer earth scientists and geographers, and anyone else who is interested, an alternative view of the opportunities available to them, aside from the more traditional career paths that often flood everybody’s radars. And alongside this, we’re also trying to raise awareness of the social science skills that are necessary for successful and sustainable development projects.

This year’s focus: volcanic hazards in Guatemala


There is one project in particular that the national GfGD group is currently working on: strengthening volcanic resilience in Guatemala. At Bristol we’re perfectly placed to contribute to this because every year students on the MSc Volcanology course spend 3 weeks studying the volcanoes in this country and learning about the agencies that are set up to monitor them. To draw on all of their experiences we held a ‘Noche de Guatemala’ to learn about this beautiful country and hear how the people living in the shadows of volcanoes are in dire need of better resources and escape routes to ensure their safety in case of eruption. As part of this event we also introduced some cultural aspects of the country as well as the current socio-political situation to put the project into context. In the discussion session that followed we saw some great suggestions for strengthening resilience, from ways to make crops that aren’t affected by volcanic eruptions, to ideas for community involvement with volcano monitoring agencies. These ideas have been passed on to the director of the national GfGD group to help inform how the project might proceed.

Noche de Guatamala at the University of Bristol. Credit: Serginio Remmelzwaal.

As well as contributing to the Guatemala project through awareness and discussions, our group has also managed to raise a fantastic £279.36 towards GfGD’s £10,000 target. This money will be used to supply improved resources to the monitoring agencies and provide educational materials for the communities affected by volcanic hazards so the risks and evacuation procedures are better understood.

Mapping for humanitarian crises


As you will probably be aware, over 9,000 miles away from the volcanoes in Guatemala, another type of natural hazard stuck violently on the 25 April this year. The 7.8 magnitude Gorkha earthquake in Nepal caused the death of more than 9,000 people and left hundreds of thousands of people homeless. We wanted to do something that could really contribute to the relief effort so we decided to hold two ‘mapathons.’ This is where a group of people get together and use OpenStreetMap with satellite images to add buildings, roads and waterways to areas where this information doesn't exist. This work is an enormous help to aid agencies that need to know all of this information to be able to help as many people as possible.
We’ve been busy this year and can’t wait to get even more people involved next year. We’ll be back in September with more talks, mapathons and hopefully some new style events to inspire anyone interested in earth processes to think again about how their knowledge could be used to bring about positive change in the developing world.

-------------------------------------------------
This blog has been written by Cabot Institute member Emily White, a postgraduate student in the School of Chemistry at the University of Bristol.

If you want to find out more about this society, request to join our Facebook group.

Email emily.white@bristol.ac.uk to join the mailing list.







Read other blogs from Caboteers working in Nepal:
Three history lessons to help reduce damage from earthquakes
World Water Day: How can research and technology reduce water use in agriculture?
Micro Hydro manufacturing in Nepal: A visit to Nepal Yantra Shala Energy
My work experience: Designing a renewable energy turbine in Nepal
Rural energy access: A global challenge
Reliable and sustainable micro-hydropower in Nepal
How Bristol geologists are contributing to international development
Cooking with electricity in Nepal

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos