Skip to main content

Why is the UK interested in volcanoes? We don’t have any of our own!

Eruption column from the explosive phase of the Eyjafjallajokull eruption drifting over a farm  - image by Bristol volcanologist Susanna Jenkins
The University of Bristol’s volcanology group has been awarded the Queen’s Anniversary Prize for its contribution to research excellenceThe Queens Anniversary Prize is the most prestigious form of national recognition an institution can receive. When I tell members of the public that, not only am I a volcanologist, but that I am part of the one of the largest and most successful volcanology groups in the world, the first reaction is always surprise: ‘Why is the UK interested in volcanoes? We don’t have any of our own!’

They are right of course, the Bristol volcanology group spends its time travelling all over the world to address volcanic risk in many countries, from the first to the third world. When one looks back on volcanic eruptions in recent history, especially the big, memorable ones like Mount St Helens, Eyjafjallajokull and Montserrat one realises that Bristol volcanologists were there at every stage.

There are, of course, many layers to handling a volcanic crisis. First there’s initial monitoring; will this volcano erupt at all? Often this involves going to volcanoes that have been little studied in remote places, or monitoring them from satellites: something which Bristol volcanology has taken in its stride, by trailblazing projects on understudied African volcanism
InSAR image showing volcanic uplift in the Great Rift Valley as part of research by Bristol volcanologist Juliet Biggs
Then there’s handling eruptions as they happen. Who will be affected? What are the primary risks? How should we respond to the media? Bristol has a glowing history of aiding in volcanic crisis by supplying the information when the world needs it. During the 2010 Eyjafjallajokull ash and aviation crisis, Bristol led the way in supplying expert opinion on managing the situation.

Still there is no rest for our volcanologists. Afterwards there’s the post-eruption work: Working out what made the volcano erupt and understanding the physical processes surrounding an event. How does it fit into the wider setting? Are the volcanoes linked? These questions have been asked and answered by our volcanologists who have also reached out to form a global database with other institutions. This has resulted in more cohesion in the community, and a greater understanding of how volcanoes interact.

A wealth of different specialities have populated the group since it was started by Professor Steve Sparks  including petrologists, geophysicists and geochemists. It is a result of this diverse environment that Bristol has been able to excel in so many areas. With natural hazards occurring on a near-daily basis, it's safe to say the group has played its part in reducing the uncertainty of volcanic hazard across the globe.  The Queen’s Anniversary Prize is an amazing recognition of the work that has been done over the years and a well-deserved reward for the hard work of the Bristol volcanologists.
--------------------------------------------------------------------
This blog is written by Cabot Institute member Keri McNamara, a PhD student in the School of Earth Sciences at the University of Bristol.
Keri McNamara

Comments

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…