Skip to main content

Talking sweet potatoes at the Source of the Nile

Last month I was invited to the Source of the Nile agricultural trade show in Jinja, Uganda. The show brings together all aspects of agriculture: from crops to chickens, cows and tractors. The event attracts over 120,000 visitors each year and runs for seven days.

I was needed on a National Crops Resources Research Institute (NaCRRI) stand where Agnes Alajo (a PhD student and breeder) was selling improved sweet potato varieties, which are resistant to pests and diseases with higher levels of pro-vitamin A.

It is estimated that around 35% of children and 55% of child-bearing mothers in rural Uganda suffer from vitamin A deficiency, which is associated with preventable child blindness and mortality. The orange-fleshed NAROSPOT varieties developed by NaCRRI are enriched with pro-vitamin A and it’s hoped their adoption will help improve the deficiency problem.

The stand also had an impressive array of biscuits, cakes and even juice made from processing sweet potato. Agriculture is very important in Uganda; it accounts for around 24% of GDP and 43% of the working population are subsistence farmers (2013). Processing sweet potatoes to produce flour can be economically viable and provides farmers with an opportunity to add value to their crop, boost income and reduce poverty.
The range of products made through processing sweet potato
I had to hurriedly absorb information about sweet potato, as very soon hoards of excited school children arrived. The main challenge was that not everyone can speak English and my UK accent was quite difficult for them to understand. I had to speak clearly and slowly to get my message across. Often teachers had to repeat what I had said in their local language. There are over 40 local languages in Uganda, so even Ugandans can find it difficult to communicate!
Agnes explains the importance of pro-vitamin A rich sweet potatoes to school students
Agnes explains the importance of pro-vitamin A rich sweet potatoes to school students
There was a lot of interest from young people who want to pursue agricultural careers and are attracted to opportunities for commercialization. Most people were very intrigued about the cakes, and couldn’t believe that they were made using sweet potato flour. Unfortunately, we couldn’t give out samples to taste until the end of the week, which caused a lot of pleading and disappointment!
Walking around the show I discovered giant cassava tubers, a “speaking head” and impressive looking cabbages. I later  saw the source of the Nile itself!
I had a great time walking around. There was plenty of entertainment and I also got to see where the Nile flows from Lake Victoria!
-----------------------------------
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie's area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie's blog Cassava Virus

Katie Tomlinson
More from this blog series:  

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos