Skip to main content

What is Probability?

The paradox of probability

Probability is a quantification of uncertainty. We use probability words in our everyday discourse: impossible, very unlikely, 50:50, likely, 95% certain, almost certain, certain. This suggests a shared understanding of what probability is, and yet it has proved very hard to operationalise probability in a way that is widely accepted.

Uncertainty is subjective

Uncertainty is a property of the mind, and varies between people, according to their learning and experiences, way of thinking, disposition, and mood. Were we being scrupulous we would always say "my probability" or "your probability" but never "the probability". When we use "the", it is sometimes justified by convention, in situations of symmetry: tossing a coin, rolling a dice, drawing cards from a pack, balls from a lottery machine. This convention is wrong, but useful -- were we to inspect a coin, a dice, a pack of cards, or a lottery machine, we would discover asymmetry.

Agreement about symmetry is an example of a wider phenomenon, namely consensus. If well-informed people agree on a probability, then we might say "the probability". Probabilities in public discourse are often of this form, for example the IPCC's "extremely likely" (at least 95% certain) that human activities are the main cause of global warming since the 1950s. Stated probabilities can never be defended as 'objective', because they are not. They are defensible when they represent a consensus of well-informed people. People wanting to disparage this type of stated probability will attack the notion of consensus amongst well-informed people, often by setting absurdly high standards for what we mean by 'consensus', closer to 'unanimity'.

Abstraction in mathematics

Probability is a very good example of the development of abstraction in mathematics. Early writers on probability in the 17th century based their calculations strongly on their intuition. By the 19th century mathematicians were discovering that intuition was not good guide to the further development of their subject. Into the 20th century mathematics was increasingly defined by mathematicians as 'the manipulation of symbols according to rules', which is the modern definition. What was surprising and gratifying is that mathematical abstraction continued (and continues) to be useful in reasoning about the world. This is known as "the unreasonable effectiveness of mathematics".

The abstract theory of probability was finally defined by the great 20th century mathematician Andrey Kolmogorov, in 1933: the recency of this date showing how difficult this was. Kolmogorov's definition paid no heed at all to what 'probability' meant; only the rules for how probabilities behaved were important. Stripped to their essentials, these rules are:

1. If A is a proposition, then Pr(A) >= 0.
2. If A is certainly true, then Pr(A) = 1.
3. If A and B are mutually exclusive (i.e. they cannot both be true), then Pr(A or B) = Pr(A) + Pr(B).

The formal definition is based on advanced mathematical concepts that you might learn in the final year of a maths degree at a top university.

'Probability theory' is the study of functions 'Pr' which have the three properties listed above. Probability theorists are under no obligations to provide a meaning for 'Pr'. This obligation falls in particular to applied statisticians (also physicists, computer scientists, and philosophers), who would like to use probability to make useful statements about the world.

Probability and betting

There are several interpretations of probability. Out of these, one interpretation has emerged to be both subjective and generic: probability is your fair price for a bet. If A is a proposition, then Pr(A) is the amount you would pay, in £, for a bet which pays £0 if A turns out to be false, and £1 if A turns out to be true. Under this interpretation rules 1 and 2 are implied by the reasonable preference for not losing money. Rule 3 is also implied by the same preference, although the proof is arcane, compared to simple betting. The overall theorem is called the Dutch Book Theorem: if probabilities are your fair prices for bets, then your bookmaker cannot make you a sure loser if and only if your probabilities obey the three rules.

This interpretation is at once liberating and threatening. It is liberating because it avoids the difficulties of other interpretations, and emphasises what we know to be true, that uncertainty is a property of the mind, and varies from person to person. It is threatening because it does not seem very scientific -- betting being rather trivial -- and because it does not conform to the way that scientists often use probabilities, although it does conform quite closely to the vernacular use of probabilities. Many scientists will deny that their probability is their fair price for a bet, although they will be hard-pressed to explain what it is, if not.

Blog post by Prof. Jonathan Rougier, Professor of Statistical Science.

First blog in series here.

Second blog in series here

Third blog in series here.

Popular posts from this blog

Bristol Future’s magical places: Sustainability through the eyes of the community

“What is science? Why do we do it?”. I ask these questions to my students a lot, in fact, I spend a lot of time asking myself the same thing.

And of course, as much as philosophy of science has thankfully graced us with a lot of scholars, academics and researchers who have discussed, and even provided answers to these questions, sometimes, when you are buried under piles of papers, staring at your screen for hours and hours on end, it doesn’t feel very science-y, does it?

 As a child I always imagined the scientist constantly surrounded by super cool things like the towers around Nicola Tesla, or Cousteau being surrounded by all those underwater wonders. Reality though, as it often does, may significantly differ from your early life expectations. I should have guessed that Ts and Cs would apply… Because there is nothing magnificent about looking for that one bug in your code that made your entire run plot the earth inside out and upside down, at least not for me.

I know for myself, I…

Will July’s heat become the new normal?

For the past month, Europe has experienced a significant heatwave, with both high temperatures and low levels of rainfall, especially in the North. Over this period, we’ve seen a rise in heat-related deaths in major cities, wildfires in Greece, Spain and Portugal, and a distinct ‘browning’ of the European landscape visible from space.

As we sit sweltering in our offices, the question on everyone’s lips seems to be “are we going to keep experiencing heatwaves like this as the climate changes?” or, to put it another way, “Is this heat the new norm?”

Leo Hickman, Ed Hawkins, and others, have spurred a great deal of social media interest with posts highlighting how climate events that are currently considered ‘extreme’, will at some point be called ‘typical’ as the climate evolves.
In January 2007, the BBC aired a special programme presented by Sir David Attenborough called "Climate Change - Britain Under Threat".

It included this imagined weather forecast for a "typical s…

Dadaism in Disaster Risk Reduction: Reflections against method

Reflections and introductions: A volta The volta is a poetic device, closely but not solely, associated with the Shakespearean sonnet, used to enact a dramatic change in thought or emotion. Concomitant with this theme is that March is a month with symbolic links to change and new life. The Romans famously preferred to initiate the most significant socio-political manoeuvres of the empire during the first month of their calendar, mensis Martius. A month that marked the oncoming of spring, the weakening of winter’s grip on the land and a time for new life.
The need for change Having very recently attended the March UKADR conference, organised by the Cabot Institute here in Bristol, I did so with some hope and anticipation. Hope and anticipation for displays and discussions that conscientiously touched upon this volta, this need for change in how we study the dynamics of natural hazards. The conference itself was very agreeable, it had great sandwiches, with much stimulating discussion …