Skip to main content

Global Environmental Change mini-symposium

At the end of June, the Cabot Institute hosted the Global Environmental Change mini-symposium – a one hour whistle-stop tour showcasing the breadth of research within this theme of the Cabot Institute. Speakers represented different schools from the University that actively work on the spectrum of Global Environmental Change challenges, such as environmental law and policy, biodiversity conservation, biogeochemical cycles, environmental justice and environmental history.


Each speaker had time for a very short talk, with some choosing to focus on specific aspects of their work in depth and others instead covering the breadth of research carried out by colleagues in their school. The audience too came from a wide background, with everyone from undergraduate and masters students up to professors represented. Although with five speakers (plus some words from the theme leaders, Jo House and Matt Rigby) there was not much time for questions during the hour of talks, there was plenty of time for discussion over food and drinks afterwards.

Although it was billed as a miniature event, it set out to address grand, ambitious, global challenges. It was a short, punchy reminder of the huge range of research skills found within the Cabot Institute. We might not have solved the Earth’s challenges in an hour or two, but now that the dust has settled we certainly have a good idea of who to ask and how to start taking them on. I look forward to the mini-symposiums for the Cabot Institute’s other five research themes!

The speakers were:
Kath Baldock – Life Sciences
Alice Venn – Social Sciences and Law
Alix Dietzel – SPAIS
Kate Hendry – Earth Sciences
Daniel Haines – History

The event was hosted by:
Jo House – Geographical Sciences

Matt Rigby – Chemistry

Blog post by Press Gang member Alan Kennedy.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos