Skip to main content

The future of UK-Canada research collaborations in the Arctic



The Arctic is one of the most rapidly changing environments on Earth, with dramatic warming of the atmosphere and the oceans, accelerating glaciers, melting permafrost and shrinking sea ice.

All of these changes have major consequences for the indigenous groups of the Arctic countries: changing ocean ecosystems will impact fisheries and other natural resources, collapsing permafrost damages their homes and infrastructure, and disappearing sea ice effects their trade routes. All with implications for employment, education, and health.

Whilst these headlines reach the UK press, the immediate consequences can seem far away from our shores. However, a changing Arctic has a world-wide reach, contributing towards global sea-level and biodiversity changes, and putting pressure on shipping, natural resources, and international relations.

There have been recent large-scale efforts within the UK research community to increase our understanding of the high-latitudes. The Natural Environment Research Council (NERC) launched the multi-million pound Changing Arctic Ocean program in 2017, initially comprising four projects investigating oceanic processes linked with the shifting sea ice dynamics, largely in the Barents Sea and Fram Straight regions near Iceland and Norway. Whilst these projects have already been successful in producing critical new data, and have developed to include a number of new projects, the focus is still firmly within the natural sciences. There is a clear need to include other disciplines, especially social sciences, and to expand to other geographical regions.

Earlier this week, I had an opportunity to attend a joint meeting between NERC and Polar Knowledge, Canada, as part of the 2018 ArcticNet meeting in Ottawa. The meeting brought together researchers and funding organisations from the UK and Canada, together with representatives of indigenous groups and northern communities. By getting these groups of people around a table together in one place, the aim was to go some way to creating a new strong international Arctic research partnership, to understand the interests and strengths in Arctic research in the two countries, make personal links and identify the next steps for all stakeholders.

For me, the meeting was worthwhile alone for the connections that I made, but also for the steep learning-curve in my understanding of Canadian research priorities: linking with people in Northern communities, building on infrastructure, engaging with communities, and blending with Indigenous Knowledge. I was particularly impressed with the true public engagement that is carried out, in their Northern approach to science, through public consultations, gap analysis, and identification of key principles in research and research ethics.

Now it’s a matter of developing the ideas that were discussed enthusiastically in the room, to build research plans with direct societal impact, true stakeholder engagement, and opportunities for early career researchers. It’s an exciting – and timely – moment to be in Arctic research. 

This blog is written by Dr Kate Hendry from the University of Bristol School of Earth Sciences and the Cabot Institute for the Environment



Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

The Global Goals: How on Earth can geologists make a difference?

Image credit: Geological Society On the 30 th October the Bristol Geology for Global Development (GfGD) group trekked off to London to the grandeur of the Geological Society  for the 3 rd annual GfGD conference . Joel Gill, the director of GfGD, opened the conference with the bold claim: “Probably the world’s first meeting of geologists to discuss the Global Goals.” And it’s not an overstatement. Despite first appearances, geology has a crucially important role to play in many of the 17 goals internationally agreedby World Leaders in September this year . So why aren’t we talking about it? The conference acted as a platform for these discussions, it gave geologists a chance to learn how they can actually contribute to the success of these international development targets and it introduced us to new ways in which geology can help make a difference. . @JoelCGill describing the importance of geology & geologists in meeting UN Sustainable Development Goals #GfGDConf p...

Welcome to our 2020 MScR cohort in Global Environmental Challenges!

September 2020 saw the arrival of the latest cohort on the MScR in Global Environmental Challenges . This year, we have students representing four Faculties, and six Schools; each with a unique independent research project that focuses on some of the most pressing challenges faced today.  With projects ranging from using chemistry to create clean air to artistic expressions of activism in Chile, we are delighted to introduce to you some of our new students below.   Harry Forrester  Can glacial flour stimulate N cycling in croplands? - School of Geographical Sciences  This research involves an investigation of the effects of glacial flour as a stimulant of microbial nitrogen cycling in cropland. Through this study, I aim to establish myself as a well-rounded Biogeochemist and explore interdisciplinary collaborations throughout the academic community. I hope to gain insight into environmental policy making, preparing me to enact effective change.  Lauren Prou...