Skip to main content

Why snow days are becoming increasingly rare in the UK

A snowy start to the day at Watlington station, King’s Lynn. December 18 2009. Lewis Collard/Wikipedia

Winter frost fairs were common on the frozen River Thames between the 17th and 19th centuries, but they’ve become unimaginable in our lifetime. Over decades and centuries, natural variability in the climate has plunged the UK into sub-zero temperatures from time to time. But global warming is tipping the odds away from the weather we once knew.

These days, people in the UK have become accustomed to much warmer, wetter winters. In fact, winter is warming faster than any other season. This is bad news for those holding out for a white Christmas – the Met Office reports that only four Christmases in over five decades recorded snow at more than 40% of UK weather stations.

Painting of people, tents and horse-drawn carriages on the frozen river.
A frost fair on the River Thames, painted by Thomas Wyke (1683-1684). Thomas Wyke/Wikipedia

Christmas is a magical day for many, but meteorologically, it’s no different from other winter periods, when snow and ice are also becoming less common. The Met Office definition of a snow day at a given location in the UK is when snow lies on at least 50% of the ground at 9am. Currently, the Cairngorms around Aviemore receive over 70 snow-lying days per year – the most in the UK.

This amount is smaller than in previous decades though. Met Office data shows that, since 1979, the number of snow-lying days has generally decreased by up to five days per decade, and up to ten days per decade in the North Pennines, near Penrith. Around a fifth of the total area of the UK has experienced a significant drop in the prevalence of days with snow lying on the ground.

Two maps of the UK depicting the change in prevalence of snow days throughout the UK from 1971-2019.
Snow days are a rarer occasion in the UK today than they were five decades ago. Met Office, Author provided

What causes snow days?

Snow days are often the result of a meandering jet stream, the fast-flowing current of air that’s between 9km and 16km above the Earth’s surface. The jet stream normally transports temperate weather from the Atlantic across the UK, but if it’s displaced southwards, it allows persistent high pressure systems of colder air from the north and east, originating in the Arctic or over the Eurasian continent, known as blocking high pressures, to settle over the UK for extended periods.

A number of atmospheric processes can cause the jet stream to meander, but perhaps the most dramatic is when the stratospheric polar vortex, a huge rotating air mass in the middle atmosphere, breaks down. This disruption causes the jet stream to weaken, leading to events such as the infamous 2018 Beast from the East, which brought widespread snowfall to the UK.

The winter of 2018 was not unique in this sense – 2009-2010 and 2013 both brought snowfall because of these dynamic “beasts”. So why is there still a decline in winter snow days in the UK?

The snows of yesteryear

There’s no strong evidence for a long-term trend in polar vortex disruptions, or other atmospheric processes that influence the jet stream. So the fact that people in the UK have fewer snow days to enjoy each year than they did in the past can’t be blamed on the invisible twists and turns above their heads.

But as the concentration of CO₂ in the atmosphere climbs, disruptions that do occur sit on top of increasing background temperatures, reducing the likelihood of the cold spells that bring widespread snowfall. Just as natural climate trends have lowered the severity of winters since the days of the frost fairs, man-made climate change will increasingly keep the UK’s average temperature above zero.

A heavy covering of snow can transform the country and our perception of it. Snow days, with the closures of schools and workplaces that they bring, evoke fond memories and bring out the child in many as hillslopes and parks become sledging highways. More tangibly, in Scotland, the snowsports industry is estimated to be worth over £30 million a year.

But wintry weather can be dangerous too. The cold affects our health, exacerbating heart and lung conditions and the spread of infectious diseases. In extreme cases, heavy snowfall can cause widespread livestock deaths, which happened in Northern Ireland in 2013. The inevitable disruption to travel and businesses can cause economic damage running into billions of pounds, with sectors like the construction industry halted entirely.

While the falling chances of a white Christmas might disappoint many, the current trajectory of less and less snow will at least come as a relief to some.The Conversation

-------------------------

This blog is written by Cabot Institute members Dr Alan Thomas Kennedy-Asser, Research Associate in Climate Science, University of Bristol; Dr Dann Mitchell, Met Office Co-Chair in Climate Hazards, University of Bristol, and Dr Eunice Lo, Research Associate in Climate Science, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dann Mitchell
Alan Kennedy-Asser

Eunice Lo


Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos