Skip to main content

Electric ecology: we’re discovering how animals and plants use electricity in ingenious ways

Sam England, Author provided

When you hear the word “electricity”, thoughts of power lines or household appliances are probably conjured up in your mind. But electricity is not just a modern human phenomenon – it was around long before us and, in fact, long before planet Earth.

“Electricity” simply refers to the interactions between any electrically charged objects, not just human-made ones, and these interactions are commonly found in the natural world among many animals and plants.

At the small scale, these electrical interactions involve negatively charged electrons and/or positively charged protons – opposite charges attract and like charges repel. But each of these tiny particle interactions can add up, and contribute to creating effects which we can see at the much larger ecological scale in the interactions between animals, plants and their environment.

In a lot of cases, what we are seeing in the natural world is static electricity, which is what you experience when you rub a balloon on your hair and it becomes statically charged. The exact same thing can happen to animals.

As animals run, crawl or fly, their body parts rub on objects in their environment – or even just the air – and this charges them up, just like the balloon rubbing on your head. The amount of charge animals can build up this way is surprisingly high, with many different species accumulating charges that when measured as voltages can be in the region of many hundreds or thousands of volts. That’s more than the voltage that comes out of your plug sockets at home.

We wanted to review whether this static electricity helps animals live their lives. The answer is a resounding “yes”.

Because statically charged objects can attract and repel each other, many different kinds of ecological interactions are affected by them.

The static charges on the feet of geckos help them stick to surfaces, so they can wall-run with ease.

Spiders also love a bit of static electricity; not only are their webs electrostatically attracted towards charged flying insects, but they also use electricity to fly. Several species of spider exhibit a behaviour called “ballooning”, where they let out strands of silk that lift them up into the air like a balloon, and carry them away to disperse and find new homes. It turns out that static electricity in the atmosphere, the type that causes thunderstorms in extreme cases, actually helps spiders in their aviation efforts by statically attracting the charged silk strands upwards into the atmosphere.

It is not just animals that take advantage of these invisible electric forces either. Pollen has actually been shown to jump from flower to insect or bird pollinator without any contact between the two. The static charges of insects and hummingbirds are strong enough to pull pollen through the air, even over several centimetres in some cases.

Hummingbird feeding from red flower
Hummingbirds attract pollen thanks to static electric charges. Jeffrey Eisen / Pexels, CC BY

Many animals can detect electricity too

Because naturally occurring electricity permeates the environment and lives of so many organisms – and has clear ecological value – it seemed likely that some animals may have evolved sensory systems to detect it.

Recent research has discovered that many animal species can indeed detect electricity when it is relevant to their natural ecology. We call this “aerial electroreception”.

Bumblebees and hoverflies can sense the electricity that exists around flowers, and use this information to learn which flowers might have the best nectar stocks. Similarly, part of the “waggle dance”, a series of movements performed by honeybees to communicate to each other where to forage, is also transmitted electrically by the detection of the statically charged bee body shaking around.

It has also now been shown that those flying spiders I mentioned earlier can detect how strong the local atmospheric electrical conditions are, and can then use this information to decide when to attempt take-off.

We are only just beginning to uncover the multiple strands of this newly discovered sense. There are likely hundreds, if not thousands, more species capable of aerial electroreception, and in many more ecological contexts; perhaps a prey animal can detect its approaching predators by the static charge on the predator, or vice versa. There is so much more to be discovered.

Possibly even more important though, is to assess to impact of human activity on this electric ecology.

The magnitude of many human-made electricity sources are comparable, if not greater, than the natural sources of electricity. We might be swamping the electrical senses of key pollinators or interfering with the natural world in other, as yet unknown, ways. While the discovery of this electrical sense is incredibly exciting, it also highlights how little we really know about the ways in which we could be hurting and disturbing the natural world.

-------------------------

This blog is by Sam England, PhD researcher in Biological Sciences, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Sam England


Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and ...