Skip to main content

The Alps and the atmosphere

Grenoble.  Image credit Rebecca Brownlow.
In it’s 23rd year, the European Research Course on Atmospheres (ERCA) is notorious amongst atmospheric scientists. PhD and Masters students made their way to Grenoble, France from as far afield as Australia, Bolivia, Russia and India to spend five intensive weeks learning about everything to do with the atmosphere. Grenoble seemed to be the perfect place to hold this kind of course; an alpine city surrounded by mountains we felt very close to the physical interactions of the earth system.

The first four weeks were packed full of lectures with topics ranging from city air pollution to the changing climate mechanisms, from the formation of clouds to the environmental impacts of hydropower. Every day brought a new perspective or entirely different subject to focus on. My own PhD research is about estimating the greenhouse gas emissions of the UK so I really got a great sense of how my work fits in with the wider field of atmospheric science. Luckily all of these hours of lectures were interspersed with copious amounts of food from the university canteen and delicious pastries at break-time. We were in France, we were never going to go hungry!

Getting the bigger picture


ERCA 2015 group, taken from
the ERCA website.
One of the most interesting aspects of these first four weeks was the emphasis on the social science side of the work that we do. It is really impossible to separate atmospheric science from an understanding of the politics of climate change and the attitude of the general public towards ecological behaviour. The opening speech of ERCA was by Michel Colombier, from the IDDRI. Michel has taken part in many international climate negotiations and he summarised the current situation leading up to the Paris climate debates in December 2015. He had a warning for us scientists: we were likely to be very disappointed with the seemingly unambitious climate targets of international governments. However, Michel was adamant that we should still see the outcome of the Paris Conference of Parties (COP 21) as a very important step in the right direction.

A couple of weeks later we tried to simulate our own version of the Paris 2015 debates, each person on the course chose a country to represent, and it was a complete disaster! We definitely didn't come to any agreement and a lot of the time allocated was taken up with Chile suggesting it wouldn't matter if Tuvalu ended up under water – so, not a very serious discussion! However, this exercise was designed to put us in the shoes of politicians, to recreate their dilemmas, and in fact we weren't far off. We realised that it is impossible to focus the discussion when every government has its own agenda. We realised that the concerns of the most and least developed countries are worlds apart. And most importantly, we realised that any global climate agreement will be enormously difficult to obtain.

Image credit: delegfrance-unesco
My role in the debate was the UK and it was very interesting researching the UK’s position for Paris 2015. The government has produced a great document that outlines all aspects of their expectations from a climate deal. I have to say, I was fairly impressed with what they are proposing. For example, the UK is prepared to push for an existing EU emissions reduction target to increase from 40% to 50% reduction by 2030 (from 1990 base levels). The UK is also proposing an agreement that really understands the needs of the least developed countries and is creating projects such as BRACED to improve the resilience of developing countries against climate change.

Snow, stars and science


The final week of the course was a weeklong visit to the Observatoire d’Haute Provence. This is really a magical place, a haven for scientists with dozens of little astronomical observatories poking out of a forest of oak trees, made even more magical when the whole place was covered in snow a few days after we arrived. As well as making space observations here they also have a tall tower for making greenhouse gas measurements, several LiDARs (giant green laser beams) that measure various geophysical properties of the atmosphere and an ecological research centre that looks at the impact of climatic changes on oak trees. We were able to catch the comet Lovejoy on an 80cm telescope while we were there, a once in a lifetime opportunity, as this blurry ball of light won’t be seen for another 8,000 years.


Observatoire d'Haute Provence. Image credit: Rebecca Brownlow













Having just started my PhD in September 2014, this winter school experience has been a wonderful introduction to the ins and outs of the field of science that I now work in. It’s given me an international network of friends and fellow atmospheric PhD students, as well as having been a fantastic opportunity to learn from some leading researchers. It’s left me with lots to think about and lots of ideas about science in general, ready to get stuck back in to my project.
--------------------------
This blog is written by Cabot Institute member Emily White, a PhD student in the School of Chemistry at the University of Bristol.

Comments

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…