Skip to main content

The last time Earth was this hot hippos lived in Britain (that's 130,000 years ago)

Image taken from Wikimedia Commons. Credit Paul Maritz.
It’s official: 2015 was the warmest year on record. But those global temperature records only date back to 1850 and become increasingly uncertain the further back you go. Beyond then, we’re reliant on signs left behind in tree rings, ice cores or rocks. So when was the Earth last warmer than the present?

The Medieval Warm Period is often cited as the answer. This spell, beginning in roughly 950AD and lasting for three centuries, saw major changes to population centres across the globe. This included the collapse of the Tiwanaku civilisation in South America due to increased aridity, and the colonisation of Greenland by the Vikings.

But that doesn’t tell the whole story. Yes, some regions were warmer than in recent years, but others were substantially colder. Across the globe, averaged temperatures then were in fact cooler than today.

To reach a point when the Earth was significantly warmer than today we’d need to go back 130,000 years, to a time known as the Eemian.

For about 1.8m years the planet had fluctuated between a series of ice ages and warmer periods known as “interglacials”. The Eemian, which lasted around 15,000 years, was the most recent of these interglacials (before the one we’re currently in).

Although global annual average temperatures were approximately 1 to 2˚C warmer than preindustrial levels, high latitude regions were several degrees warmer still. This meant ice caps melted, Greenland’s ice sheet was reduced and the West Antarctic ice sheet may have collapsed. The sea level was at least 6m higher than today.

Across Asia and North America forests extended much further north than today and straight-tusked elephants (now extinct) and hippopotamuses were living as far north as the British Isles.

How do we know all this? Well, scientists can estimate the temperature changes at this time by looking at chemicals found in ice cores and marine sediment cores and studying pollen buried in layers deep underground. Certain isotopes of oxygen and hydrogen in ice cores can determine the temperature in the past while pollen tells us which plant species were present and therefore gives us an indication of climatic conditions suitable for that species.

We know from air bubbles in ice cores drilled on Antarctica that greenhouse gas concentrations in the Eemian were not dissimilar to preindustrial levels. However orbital conditions were very different – essentially there were much larger latitudinal and seasonal variations in the amount of solar energy received by the Earth.

So although the Eemian was warmer than today the driving mechanism for this warmth was fundamentally different to present-day climate change, which is down to greenhouses gases. To find a warm period caused predominantly by conditions more similar to today, we need to go even further back in time.


The past 540 million years. Note the Eemian spike and the Miocene Optimum. Glen Fergus / wiki, CC BY-SA

As climate scientists, we’re particularly interested in the Miocene (around 23 to 5.3 million years ago), and in particular a spell known as the Miocene-Climate Optimum (11-17 million years ago). Around this time CO2 values (350-400ppm) were similar to today and it therefore potentially serves as an appropriate analogue for the future.

During the Optimum, those carbon dioxide concentrations were the predominant driver of climate change. Global average temperatures were 2 to 4˚C warmer than preindustrial values, sea level was around 20m higher and there was an expansion of tropical vegetation.

However, during the later Miocene period CO2 declined to below preindustrial levels, but global temperatures remained significantly warmer. What kept things warm, if not CO2? We still don’t know exactly – it may have been orbital shifts, the development of modern ocean circulation or even big geographical changes such as the Isthmus of Panama narrowing and eventually closing off – but it does mean direct comparison with the present day is problematic.

Currently orbital conditions are suitable to trigger the next glacial inception. We’re due another ice age. However, as pointed out in a recent study in Nature, there’s now so much carbon in the atmosphere the likelihood of this occurring is massively reduced over the next 100,000 years.
------------------------------
This blog is written by Cabot Institute members Emma Stone, Research Associate in Climatology, University of Bristol and Alex Farnsworth, Postdoctoral Researcher in Climatology, University of Bristol.

Emma Stone

Alex Farnsworth
This article was originally published on The Conversation. Read the original article.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos