Skip to main content

We just had the hottest year on record – where does that leave climate denial?

Image credit: Wikimedia Commons
At a news conference announcing that 2015 broke all previous heat records by a wide margin, one journalist started a question with “If this trend continues…” The response by the Director of NASA’s Goddard Institute for Space Studies, Gavin Schmidt, summed up the physics of climate change succinctly: “It’s not a question of if…”

Even if global emissions begin to decline, as now appears possible after the agreement signed in Paris last December, there is no reasonable scientific doubt that the upward trends in global temperature, sea levels, and extreme weather events will continue for quite some time.

Politically and ideologically motivated denial will nonetheless continue for a little while longer, until it ceases to be politically opportune.

So how does one deny that climate change is upon us and that 2015 was by far the hottest year on record? What misinformation will be disseminated to confuse the public?


The real deal: 2015 was the hottest year on record. Met Office, CC BY-NC-SA

Research has identified several telltale signs that differentiate denial from scepticism, whether it is denial of the link between smoking and lung cancer or between CO2 emissions and climate change.
One technique of denial involves “cherry-picking”, best described as wilfully ignoring a mountain of inconvenient evidence in favour of a small molehill that serves a desired purpose. Cherry-picking is already in full swing in response to the record-breaking temperatures of 2015.

Political operatives such as James Taylor of the Heartland Institute – which once compared acceptance of the science of climate change to the Unabomber in an ill-fated billboard campaign – have already denied 2015 set a record by pointing to satellite data, which ostensibly shows no warming for the last umpteen years and which purportedly relegates 2015 to third place.


Satellite data (green) has much more uncertainty than thermometer records (red). Kevin Cowtan / RSS / Met Office HadCRUT4, Author provided

So what about the satellite data?

If you cannot remember when you last checked the satellites to decide whether to go for a picnic, that’s probably because the satellites don’t actually measure temperature. Instead, they measure the microwave emissions of oxygen molecules in very broad bands of the atmosphere, for example ranging from the surface to about 18km above the earth. Those microwave soundings are converted into estimates of temperature using highly-complex models. Different teams of researchers use different models and they come up with fairly different answers, although they all agree that there has been ongoing warming since records began in 1979.

There is nothing wrong with using models, such as those required to interpret satellite data, for their intended purpose – namely to detect a trend in temperatures at high altitudes, far away from the surface where we grow our crops and make decisions about picnics.

But to use high-altitude data with its large uncertainties to determine whether 2015 is the hottest year on record is like trying to determine whether it’s safe to cross the road by firmly shutting your eyes and ears and then standing on your head to detect passing vehicles from their seismic vibrations. Yes, a big truck might be detectable that way, but most of us would rather just have a look and see whether it’s safe to cross the road.

And if you just look at the surface-based climate data with your own eyes, then you will see that NASA, the US NOAA, the UK Met Office, the Berkeley Earth group, the Japan Meteorological Agency, and many other researchers around the world, all independently arrived at one consistent and certain end result – namely that 2015 was by far the hottest year globally since records began more than a century ago.

Enter denial strategy two: that if every scientific agency around the world agrees on global warming, they must be engaging in a conspiracy! Far from being an incidental ornament, conspiratorial thinking is central to denial. When a scientific fact has been as thoroughly examined as global warming being caused by greenhouse gases or the link between HIV and AIDS, then no contrary position can claim much intellectual or scholarly respectability because it is so overwhelmingly at odds with the evidence.

That’s why politicians such as Republican Congressman Lamar Smith need to accuse the NOAA of having “altered the [climate] data to get the results they needed to advance this administration’s extreme climate change agenda”. If the evidence is against you, then it has to be manipulated by mysterious forces in pursuit of a nefarious agenda.

This is like saying that you shouldn’t cross the road by just looking because the several dozen optometrists who have independently attested to your 20/20 vision have manipulated the results because … World Government! Taxation! … and therefore you’d better stand on your head blindfolded with tinfoil.

So do the people who disseminate misinformation about climate actually believe what they are saying?

The question can be answered by considering the stock market. Investors decide on which stock to buy based on their best estimates of a company’s future potential. In other words, investors place an educated bet on a company’s future based on their constant reading of odds that are determined by myriad factors.

Investors put their money where their beliefs are.

Likewise, climate scientists put their money where their knowledge is: physicist Mark Boslough recently offered a $25,000 bet on future temperature increases. It has not been taken up. Nobel laureate Brian Schmidt similarly offered a bet to an Australian “skeptic” on climate change. It was not taken up.

People who deny climate science do not put their money where their mouth is. And when they very occasionally do, they lose.

This is not altogether surprising: in a recent peer-reviewed paper, with James Risbey as first author, we showed that wagering on global surface warming would have won a bet every year since 1970. We therefore suggested that denial may be “… largely posturing on the part of the contrarians. Bets against greenhouse warming are largely hopeless now and that is widely understood.”

So the cherry-picking and conspiracy-theorising will continue while it is politically opportune, but the people behind it won’t put their money where their mouth is. They probably know better.
--------------------------
The Conversation
This blog was written by Cabot Institute member, Professor Stephan Lewandowsky, Chair of Cognitive Psychology, University of Bristol.

This article was originally published on The Conversation. Read the original article.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos