Skip to main content

Cassava virus: Journey from the lab to the field - Learning the ropes

Weeks 2 – 3


It’s been a bit of blur the last two weeks, getting to grips with all the activities that go on at the  National Crops Resources Research Institute (NaCRRI). I’ve spent time with Dr. Emmanuel Ogwok (Emmy), learning about the earlier days of Cassava brown streak disease (CBSD) research and how things have developed. Emmy took me on a tour to see the greenhouses where they are growing genetically modified cassava, which shows resistance to CBSD.
Dr. Emmanuel Ogwok demonstrates how to sample infected cassava from the field

Diagnosing the problem


Emmy also introduced to me how they diagnose CBSD infections. We headed out to the field and sampled cassava plants showing CBSD symptoms, processed the samples in the lab and bingo, identified the presence of the virus in all the samples by reverse transcription PCR. This is similar to the processes we follow in the UK. It was great to actually sample the infected cassava from the field myself; in the UK we normally use material which was collected years ago.

It was interesting to learn about challenges, such as getting hold of reagents which can take up to three months! The lab is responsible for testing new cassava varieties for their ability to resist CBSD infection and plays a vital role in improving cassava production.

Processing the infected cassava samples from the field

Communicating the problem


I’ve been working on communication materials to let members of the public know about NaCRRI work at the Source of the Nile agricultural trade show in July. The show will be an opportunity to present and discuss the improved cassava varieties developed by NaCRRI with policy makers, growers and members of the public.

Kampala fun


Outside of work, I’ve been having fun in Kampala; going to arts festivals, watching the football in Ugandan pubs and swimming in the Hotel Africana pool. Next week, I’m planning to visit field sites in northern Uganda, to meet some of the farmers affected by CBSD.

Dancer at La Ba Arts Festival (credit HB Visual)
-----------------------------------
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie's area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie's blog Cassava Virus

Katie Tomlinson
More from this blog series:  

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current. Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html . Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains: “We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers...