Skip to main content

Cassava virus: Journey from the lab to the field - Settling in to Ugandan life

Katherine Tomlinson from the School of Biological Sciences at the University of Bristol Cabot Institute, is spending three months in Uganda looking at the cassava brown streak virus. This virus dramatically reduces available food for local people and Katherine will be finding out how research on this plant is translating between the lab and the field.  Follow this blog series for regular updates.

I arrived late on Thursday night and spent the weekend getting acquainted with the hustle and bustle of Kampala life. I visited the impressive Gadafi mosque, cathedral, and food markets, which are full of just about every fruit and vegetable you could imagine.

On Friday, I met with my internship supervisor, Dr. Titus Alicai who is the leader of the Root Crops Research Programme at the National Crops Resources Research Institute (NaCRRI); he filled me on some of the exciting activities I’ll be taking part in, including visits to cassava field sites.

I was picked up and taken to NaCRRI in Namulonge on Sunday, stopping off at markets along the way to pick up my food supplies. I am lucky to have Everline looking after me; she’s helping me to settle into Ugandan life. NaCRRI is absolutely beautiful, it’s full of crops including cassava, sweet potato, mango, pineapple, banana, and there are even vervet monkeys running around.
National Crops Resources Research Institute, Uganda… where I’ll be spending the next three months!
At the start of the week , I was given a tour of the institute including the labs where they analyse cassava tubers for nutritional and chemical content; a vital part of the process in developing crops which not only offer maximum disease resistance, and yield but also taste good.

I then visited the molecular biology labs, where they analyse crop samples for the presence of Cassava brown streak disease viruses. This was very familiar with similar equipment to our lab at the University of Bristol. The lab manager discussed the challenges of obtaining all the expensive reagents required and how this affects their work. Other challenges include intermittent power supply, which means they need a stack of battery packs to back up the -80 freezers and PCR machines. I am looking forward to spending some time here, to learn more about the similarities and differences between molecular work in the UK and Uganda.

On Wednesday, I went to the field with some University internship students, who were scoring cassava plants for Cassava brown streak disease and Cassava mosaic disease symptoms. After their training these students will be able to advise farmers about the diseases in their local areas. It was also my chance to see symptoms in the field, where infected leaves showed a distinctive yellowing pattern.
Inspecting cassava plants for disease symptoms with University internship students
I spoke to one student who has a small farm and has experienced Cassava brown streak disease first hand. He mentioned that the disease is very common in his area, and here even tolerant cassava varieties become infected and their tubers ruined.
Characteristic Cassava brown streak disease symptoms on cassava leaves
Today I am meeting with the communications team, to find out about the projects I will be involved with, including an outreach programme with farmers surrounding the NaCRRI site to encourage them to use crop breeds developed by the institute, which offer higher disease resistance.

That’s it for now I’ll be writing another update next week so watch this space! In the meantime if you have any questions please get in touch via Twitter: @KatieTomlinson4.

-----------------------------------
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie's area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie's blog Cassava Virus

Katie Tomlinson
More from this blog series:  

Comments

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…