Skip to main content

Using GM to fight cassava brown streak disease

Last week I helped plant a new confined field trial for genetically modified (GM) cassava in western Uganda. The aim is to find how well the plants resist Cassava brown streak disease (CBSD).

Before planting, the National Crops Resources Research Institute (NaCRRI) held discussions with people from the local government and farmers’ groups. It’s vital to engage the local community so that people are correctly informed and on-board with the project. There were certainly some very strange myths to debunk!

Henry Wagaba (Head of Biosciences at NaCRRI) explained the huge losses caused by CBSD, which spoils tubers and can wipe out entire fields. CBSD is now the most devastating crop disease in Uganda and there are no resistant varieties currently available.

To fight the disease, NaCRRI researchers have developed GM cassava plants, which show high levels of resistance to CBSD at sites in southern and central Uganda. This trial will test how the plants perform in the growing conditions in western Uganda. Work will also be carried out to cross the GM plants wither farmer varieties to improve their growing and taste qualities.
I enjoyed getting stuck in and planting my first GM cassava!
GM crops are a contentious topic in Uganda. The passing of a National Biotechnology and Biosafety law has stalled in Parliament for over three years due to disagreements. Currently GM technology is used for research on banana, cassava, maize, potato, rice and sweet potato. However these are not approved for human consumption.

In nearby countries Kenya and Sudan, GM food products have been approved and many of these food products are imported into Uganda without regulation. It’s hoped the law will be passed soon to enable Ugandan farmers to reap the benefits of GM crops and protect against any potential risks.
Before the trial, I went on a safari in the Queen Elizabeth National Park, where I saw elephants, hippos and even lions!
-----------------------------------
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie's area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie's blog Cassava Virus

Katie Tomlinson
More from this blog series:  

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

The Global Goals: How on Earth can geologists make a difference?

Image credit: Geological Society On the 30 th October the Bristol Geology for Global Development (GfGD) group trekked off to London to the grandeur of the Geological Society  for the 3 rd annual GfGD conference . Joel Gill, the director of GfGD, opened the conference with the bold claim: “Probably the world’s first meeting of geologists to discuss the Global Goals.” And it’s not an overstatement. Despite first appearances, geology has a crucially important role to play in many of the 17 goals internationally agreedby World Leaders in September this year . So why aren’t we talking about it? The conference acted as a platform for these discussions, it gave geologists a chance to learn how they can actually contribute to the success of these international development targets and it introduced us to new ways in which geology can help make a difference. . @JoelCGill describing the importance of geology & geologists in meeting UN Sustainable Development Goals #GfGDConf p...