Skip to main content

Micro Hydro manufacturing in Nepal: A visit to Nepal Yantra Shala Energy

Topaz Maitland with a micro hydro turbine
For nine months I am working at an NGO called People, Energy and Environment Development Association (PEEDA), in Kathmandu, Nepal. PEEDA is an NGO dedicated to improving the livelihoods of communities, particularly the poor, by collective utilization of renewable energy resources, while ensuring due care for the environment.

My primary project is the design of a micro hydro Turgo Turbine, a small turbine which is not commonly used in Nepal. The project aims to investigate this turbine, and its potential for us in Nepal.

Nepal Yantrashala Energy (NYSE) is one of the partners on this project. NYSE is a manufacturing company specialising in micro hydro systems and I went to visit their workshop to learn about how they operate.

Micro Hydro and NYSE

At NYSE, they manufacture Pelton, Crossflow and Propeller turbines. If a client comes to them with the required head (height over which the water will drop) and flow rate, NYSE can manufacture an appropriate turbine. Every turbine is unique to the site it will be installed into.
Rough cast of a  Pelton runner cup, alongside finished cups
 
A Pelton turbine runner

Crossflow runners are made using strips of pipe as blades and machined runner plates to hold the blades


A Crossflow turbine runner   
The aim of this project is to develop a design for a Turgo turbine (an example turgo turbine system pictured below), so that NYSE might be able to manufacture one for any given head and flow. This means that engineers such as myself need to understand how our new optimised design will operate over a range of flows and heads.

Micro Hydro in Nepal

Nepal is second only to Brazil in term of hydropower potential (1). Despite this, crippling underdevelopment and a mixture of geographical, political and economical factors leave the country lacking the resources to exploit and develop this potential (1).

Dr. Suman Pradhan, Project Coordinator at NYSE, told us that the first ever Crossflow Turbine was installed in Nepal in 1961. His father was actually one of those involved in the project. Ironically, today Nepal has to import or buy the designs for such Crossflow turbines from abroad.

Universities in Nepal do have turbine testing facilities, but funding for PhDs and other hydropower research is still heavily dependent upon foreign investment. A key area of opportunity for Nepal is the development of such research facilities. With so much hydropower potential, good work could be done to improve the performance of hydropower to suit demand and manufacturers within Nepal.

Dr. Suman hopes that this new Turgo Turbine design, alongside other designs he is trying to obtain, may widen the hydropower options available and manufacturable in Nepal.

References

1) Sovacool, B. K., Dhakal, S., Gippner, O. & Bambawale, M. J., 2013. Peeling the Energy Pickle: Expert Perceptions on Overcoming Nepal's Energy Crisis. South Asia: Journal of South Asian Studies.

---------------------
This blog was written by Topaz Maitland, a University of Bristol Engineering Design Student on 3rd year industry placement.

Read another Topaz Maitland blog:
My work experience: Designing a renewable energy turbine in Nepal

Read other blogs from Caboteers working in Nepal:
Three history lessons to help reduce damage from earthquakes
World Water Day: How can research and technology reduce water use in agriculture?
Micro Hydro manufacturing in Nepal: A visit to Nepal Yantra Shala Energy
My work experience: Designing a renewable energy turbine in Nepal
Rural energy access: A global challenge
Reliable and sustainable micro-hydropower in Nepal
How Bristol geologists are contributing to international development
Cooking with electricity in Nepal

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For exa...

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and ...