Skip to main content

Beast from the East 2? What ‘sudden stratospheric warming’ involves and why it can cause freezing surface weather

Darryl Fonseka / shutterstock

A “sudden stratospheric warming” event took place in early January 2021, according to the Met Office, the UK’s national weather service. These events are some of the most extreme of atmospheric phenomena, and I study them as part of my academic research. The stratosphere is the layer of the atmosphere from around 10km to 50km above the Earth’s surface, and sudden warming up there can lead to very cold weather over Europe and Siberia, with an increased possibility of snow storms.


In winter the polar regions are in darkness 24 hours a day, and so the stratosphere over the north pole drops to -60℃ or even lower. The pole is surrounded by strong westerly winds, forming what is known as the polar vortex, a normal occurrence which develops every winter. However, about six times a decade, this vortex can break down in dramatic fashion. This can lead to temperatures over the pole increasing by up to 50°C over a few days, although temperatures are so low that they still remain below freezing. The average wind direction around the pole may also reverse, in which case a “sudden stratospheric warming” event has occurred.

The disturbance in the stratosphere can then be transmitted downward through the atmosphere. If this disturbance reaches the lower levels of the atmosphere it can affect the jet stream, a current of air which normally snakes eastwards around the planet, dividing colder polar air from warmer air to the south.

Where the jet stream crosses the Atlantic it usually points towards the British Isles, but sudden stratospheric warming can lead it to shift towards the equator. As air currents are temporarily rearranged, warmer Atlantic air is replaced by cold air from Siberia or the Arctic, and Europe and Northern Asia may experience unusually cold weather. This is what happened when the infamous “Beast from the East” passed through Europe in 2018, causing huge snowstorms and dozens of deaths.

It can take a number of weeks for the impact of stratospheric warming to reach the surface, or the process may only take a few days. These events are hard to predict in advance. Some can only be predicted a few days ahead while others may be forecast from around two weeks before.

A number of factors including a La Niña event in the tropical Pacific contributed to a strong vortex in early winter 2020/21. Strong vortices are hard to shift, meaning a sudden stratospheric warming event was not looking particularly likely. However, from just before Christmas, weather forecast model predictions began to converge on a likely stratospheric warming event in early January.

From stratosphere to surface

Around two thirds of stratospheric warming events have a detectable surface impact, up to 40 days after the onset of the event. This is usually marked by lower than normal temperatures across Northern Europe and Asia, extending into western Europe, but with warmer temperatures over the eastern Canadian Arctic.

It’s not yet clear why some stratospheric warming events take weeks to impact the surface while others are felt days later, but it may be related to how the polar vortex changes around the onset of a warming event. The vortex can split into two smaller “child vortices”, or it can be displaced from its more usual position centred near the pole, to being over northern Siberia.

Early indications suggested that 2021’s event was more likely to be split, but it subsequently showed more features of a displacement. It is not unusual for the vortex to show such mixed signals.

Colleagues and I recently developed a new method for tracking the impact of a warming event from its onset in the stratosphere to when its effect reaches the surface. We analysed 40 such events from the past 60 years, to try and figure out when we might expect extreme surface weather.

Most importantly, we found that warming events in which the stratospheric polar vortex splits in two generally lead to surface impacts appearing faster and stronger. So although there is an increased chance of snow and extreme cold in mid to late January 2021, other confounding factors may act to reduce this impact.

There are always competing forces at work in the atmosphere. Few people noticed the sudden stratospheric warming of January 2019 for example, which had little impact on the European winter. In that instance, there was a westerly influence on the North Atlantic winds, which originated in the tropics. This may have acted to oppose any stratospheric effect favouring easterly winds. In 2021, the battle is between the stratospheric warming and La Niña.

Sudden stratospheric warming events are a natural atmospheric fluctuation, not caused by climate change. So even with climate change, these events will still occur, which means that we need to be adaptable to an even more extreme range of temperatures.The Conversation

---------------------------------

This blog is written by Cabot Institute member Dr Richard Hall, Research Associate, Climate Dynamics Group, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Dr Richard Hall


Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c