Skip to main content

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet.


Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%).

Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability.

This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example, to scale a probability of 0.04 in the next 5 years up to 20 years we cannot simply multiply by 4, because the result, 0.16 (or 16%), is larger than 0.1. In this case we have to use the proper rule, which is

p_new = 1 - (1 - p_orig)^(int_new / int_orig)

where ‘^’ reads ‘to the power of’. The example above becomes

p_new = 1 - (1 - 0.04)^(20 / 5) = 0.15 (or 15%).

So the approximation would have been 1 percentage point out in this case. The highlighted text in yellow can be pasted directly into a spreadsheet cell (the answer is 0.1507).

Of course it is unlikely to matter in practice whether the probability is 0.15 or 0.16.  But the difference gets bigger as the probabilities get bigger.  For example, it would definitely be a mistake to multiply a 0.25 one-year probability by 5 to find the five-year probability, because the result would be greater than 1.  Using the formula, the correct answer is a five-year probability of 0.76.

Blog post by Prof. Jonathan Rougier, Professor of Statistical Science.

Second blog in series here.
Third blog in series here.

Image: By Hovik Avetisyan [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Popular posts from this blog

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve...

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and ...