Skip to main content

Paul F. Hoffman visits the University of Bristol



Paul F Hoffman of Harvard
On the 24th and 25th of September, Professor Paul F Hoffman of Harvard University (USA) kindly offered to visit the University of Bristol for two days. Fresh from fieldwork in Namibia, Paul agreed to give two talks: one upon Cryogenian glaciations and another upon the interaction of climate scientists and geologists.

Snowball Earth - Image from COSMOS
Paul is perhaps most well known for his part in the development of the Snowball Earth theory, suggesting that during the Cryogenian (850 to 635 million years ago) ice covered the entire globe, from the poles to the tropics. This theory is based upon multiple strands of evidence including palaeomagnetics, sedimentology, isotopic analysis and numerical modelling. Paul succinctly summarised these ideas while also discussing some new results published in Science two years ago. The authors of this paper suggest that during the breakup of Rodinia, a proterozoic supercontinent, the eruption of the Franklin Large Igneous Province (LIP) in Canada (716Ma) may have produced a climatic state more susceptible to glaciation. Although there have been many critics of Snowball Earth, it seems Paul remains loyal to the theory.  A wine reception was held afterwards within the School of Geography and allowed for further discussion amongst staff and students.

Paul gave a second talk on 25th September to a selection of PhDs and PDRAs who attend the Climate Journal Club (see below for details). Paul chose to give a more anecdotal, but nonetheless interesting, talk on the co-evolution of climate scientists and geologists during the last 250 years. His talk focused upon the development of a theory: from indifference to hysteria, followed by rejection and then finally acceptance. I asked him where Snowball Earth stands. He replied that it was somewhere in between hysteria and rejection!

Maybe in 50 years time we will know whether Paul was right all along...

--------------------------------------------------------------------------
For more details, see the following references:

Hoffman, P.F., et al (1998) A neoproterozoic Snowball Earth. Science, 281, 1342
MacDonald, F.A., et al (2010) Calibrating the Crypogenian. Nature, 327, 1241

This blog was written by Gordon Inglis who runs the Climate Journal Club at the University of Bristol. 

For more details on attending the Climate Journal Club (bimonthly event designed to allow PhD and PDRAs to discuss a selection of climate-themed paper), please email Gordon.Inglis@bristol.ac.uk

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr