Skip to main content

Paul F. Hoffman visits the University of Bristol



Paul F Hoffman of Harvard
On the 24th and 25th of September, Professor Paul F Hoffman of Harvard University (USA) kindly offered to visit the University of Bristol for two days. Fresh from fieldwork in Namibia, Paul agreed to give two talks: one upon Cryogenian glaciations and another upon the interaction of climate scientists and geologists.

Snowball Earth - Image from COSMOS
Paul is perhaps most well known for his part in the development of the Snowball Earth theory, suggesting that during the Cryogenian (850 to 635 million years ago) ice covered the entire globe, from the poles to the tropics. This theory is based upon multiple strands of evidence including palaeomagnetics, sedimentology, isotopic analysis and numerical modelling. Paul succinctly summarised these ideas while also discussing some new results published in Science two years ago. The authors of this paper suggest that during the breakup of Rodinia, a proterozoic supercontinent, the eruption of the Franklin Large Igneous Province (LIP) in Canada (716Ma) may have produced a climatic state more susceptible to glaciation. Although there have been many critics of Snowball Earth, it seems Paul remains loyal to the theory.  A wine reception was held afterwards within the School of Geography and allowed for further discussion amongst staff and students.

Paul gave a second talk on 25th September to a selection of PhDs and PDRAs who attend the Climate Journal Club (see below for details). Paul chose to give a more anecdotal, but nonetheless interesting, talk on the co-evolution of climate scientists and geologists during the last 250 years. His talk focused upon the development of a theory: from indifference to hysteria, followed by rejection and then finally acceptance. I asked him where Snowball Earth stands. He replied that it was somewhere in between hysteria and rejection!

Maybe in 50 years time we will know whether Paul was right all along...

--------------------------------------------------------------------------
For more details, see the following references:

Hoffman, P.F., et al (1998) A neoproterozoic Snowball Earth. Science, 281, 1342
MacDonald, F.A., et al (2010) Calibrating the Crypogenian. Nature, 327, 1241

This blog was written by Gordon Inglis who runs the Climate Journal Club at the University of Bristol. 

For more details on attending the Climate Journal Club (bimonthly event designed to allow PhD and PDRAs to discuss a selection of climate-themed paper), please email Gordon.Inglis@bristol.ac.uk

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c