Skip to main content

The carbon mountain: Dealing with the EU allowance surplus

It’s not news that the EU emissions trading system (EU-ETS) is in trouble. A build-up of surplus emission allowances has caused dangerous instability in the carbon market and a plunge in prices since the economic slump in 2008 began (See Figure 1, courtesy of David Hone).

Figure 1, courtesy of David Hone

The discussion at the All Party Parliamentary Climate Change Group’s (APPCCG) meeting on the 28th of January centred on the causes and consequences of the EU-ETS allowance surplus. The majority of speakers at this session had a background in the discipline of economics, so inevitably the exchange of views was… frank.  The panel were in agreement that EU-ETS is in crisis; but can and should it be saved?

Emissions trading schemes, of which EU-ETS is a canonical example, are an attempt to allow market forces to correct the so-called ‘market failure’ that is carbon emission. From the point of view of a classical economist, the participants in carbon emitting industries do not naturally feel the negative effects their activities cause to the environment. Emissions trading forces carbon emitters to ‘purchase’ the right to pollute on a market. In effect, they pay to receive permits (or allowances) to emit a certain level of emissions. If they do not reach this level of emission, the excess can be sold back onto the market, allowing others to make use of it. The prices of permits are determined by market forces, so cannot be fixed by the EU. The quantity of permits is within the control of the EU, and this is where the problem lies.

James Cameron, Chairman Climate Change Capital
In the aftermath of the 2008 slump, a surplus of allowances began to build up, leading to a crash in the price of allowances. Many commentators blame EU economic forecasting for this problem, as the recession and consequent reduction in economic activity was not factored in to the EU-ETS control mechanism. Criticism has been forthcoming for the economic models used, and some go as far as to liken the mismanagement of EU-ETS to the ‘wine-lake and butter-mountain’ days of the 1980s, where the Common Agricultural policy was allowed to consume over 70% of the EU’s budget. Perhaps the models are too simple - James Cameron, a speaker at the APPCCG event, spoke of the ‘premium on simplicity’ that exists in creating policy. Maybe that approach has extended itself into the mathematical models used to predict the performance of EU-ETS, rendering them over-simplistic?

Personally, I see things a little differently. It’s clear that economic models are often far from perfect; however, I’m not sure that’s where the problem lies. In the implementation of policy, decision makers have to draw on the implications of many separate models; for instance, they must consider the GDP growth of EU member states, their adoption rate of new energy efficiency standards and the relative industrialisation of their economies. To my mind, the greatest source of error is in the gaps and interfaces between these economic models. Policy makers must make decisions on how to interpret the way economic predictions will interact with one another, and these interpretations are always subject to value judgements. What we need is a more joined-up approach.

Climate science has long used ‘macro-models’ to incorporate a variety of physical processes into their predictions, an approach that could be adopted by economists as well. While the first economic macro-models may not achieve even a fraction of the accuracy of climate models, that is not to say they cannot be improved through collaboration and quantitative criticism. Perhaps now is the time to make a start?

This blog is written by Neeraj Oak, Cabot Institute.

Neeraj Oak


Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here:
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Brexit: can research light the way?

What could Brexit mean for UK science? What impact will it have on UK fisheries? Could Brexit be bad news for emissions reductions? These were just some questions discussed at a Parliamentary conference last week, organised by the Parliamentary Office of Science and Technology (POST), the Commons Library and Parliament’s Universities Outreach team.

MPs researchers, Parliamentary staff and academic researchers from across the country came together to consider some of the key policy areas affected by the UK’s decision to leave the EU.

Why does academic research matter to Parliament? Given the unchartered waters that Parliament is facing as the UK prepares to withdraw from the EU, it is more important than ever that Parliamentary scrutiny and debate is informed by robust and reliable evidence.

Academic research is expected to meet rigorous standards of quality, independence and transparency. Although it is far from being the only source of evidence relevant to Parliament, it has vital ro…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.