Skip to main content

The carbon mountain: Dealing with the EU allowance surplus

It’s not news that the EU emissions trading system (EU-ETS) is in trouble. A build-up of surplus emission allowances has caused dangerous instability in the carbon market and a plunge in prices since the economic slump in 2008 began (See Figure 1, courtesy of David Hone).

Figure 1, courtesy of David Hone

The discussion at the All Party Parliamentary Climate Change Group’s (APPCCG) meeting on the 28th of January centred on the causes and consequences of the EU-ETS allowance surplus. The majority of speakers at this session had a background in the discipline of economics, so inevitably the exchange of views was… frank.  The panel were in agreement that EU-ETS is in crisis; but can and should it be saved?

Emissions trading schemes, of which EU-ETS is a canonical example, are an attempt to allow market forces to correct the so-called ‘market failure’ that is carbon emission. From the point of view of a classical economist, the participants in carbon emitting industries do not naturally feel the negative effects their activities cause to the environment. Emissions trading forces carbon emitters to ‘purchase’ the right to pollute on a market. In effect, they pay to receive permits (or allowances) to emit a certain level of emissions. If they do not reach this level of emission, the excess can be sold back onto the market, allowing others to make use of it. The prices of permits are determined by market forces, so cannot be fixed by the EU. The quantity of permits is within the control of the EU, and this is where the problem lies.

James Cameron, Chairman Climate Change Capital
In the aftermath of the 2008 slump, a surplus of allowances began to build up, leading to a crash in the price of allowances. Many commentators blame EU economic forecasting for this problem, as the recession and consequent reduction in economic activity was not factored in to the EU-ETS control mechanism. Criticism has been forthcoming for the economic models used, and some go as far as to liken the mismanagement of EU-ETS to the ‘wine-lake and butter-mountain’ days of the 1980s, where the Common Agricultural policy was allowed to consume over 70% of the EU’s budget. Perhaps the models are too simple - James Cameron, a speaker at the APPCCG event, spoke of the ‘premium on simplicity’ that exists in creating policy. Maybe that approach has extended itself into the mathematical models used to predict the performance of EU-ETS, rendering them over-simplistic?

Personally, I see things a little differently. It’s clear that economic models are often far from perfect; however, I’m not sure that’s where the problem lies. In the implementation of policy, decision makers have to draw on the implications of many separate models; for instance, they must consider the GDP growth of EU member states, their adoption rate of new energy efficiency standards and the relative industrialisation of their economies. To my mind, the greatest source of error is in the gaps and interfaces between these economic models. Policy makers must make decisions on how to interpret the way economic predictions will interact with one another, and these interpretations are always subject to value judgements. What we need is a more joined-up approach.

Climate science has long used ‘macro-models’ to incorporate a variety of physical processes into their predictions, an approach that could be adopted by economists as well. While the first economic macro-models may not achieve even a fraction of the accuracy of climate models, that is not to say they cannot be improved through collaboration and quantitative criticism. Perhaps now is the time to make a start?

This blog is written by Neeraj Oak, Cabot Institute.



Neeraj Oak

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce