Skip to main content

Why forests are about more than just climate change

It’s National Tree Week, and there is a plethora of talk about all the great things that trees do: encouraging biodiversity, providing a pleasant space for humans, and providing numerous ecosystem services. As well as this, there is some reference to how trees take in carbon dioxide, and the benefits of this for helping to prevent climate change. But what if trees didn’t help prevent climate change? What if actually, they increased climate change?

Afforestation (planting forests) is one of many suggestions as a way to deliberately change the earth’s climate to attempt to reverse the effects of climate change (known as ‘geoengineering’). Planting more trees seems like a an obvious, natural solution. Carbon offsetting, RED+ and lots of other schemes around the issue of climate change have been based on the preservation or increase of forests. But does it work?

We've known for some time that boreal forests contribute to climate change rather than help prevent it, because of changes in the surface reflectance (the albedo). But thus far, forests in other places have been thought to be beneficial, storing up carbon and not affecting the albedo so much.

But our recent study suggests that globally, preserving and expanding forests actually causes a net global warming. We used the Met Office's latest climate model and did simulations of future climate change, with and without afforestion/forest preservation, and we found that though the deforestation has no discernable effect on the climate, the afforestation does.

Does this mean that we are advocating chopping down forests? No. As National Tree Week says, forests are about more than climate change. However much climate change is a key challenge for the future, we can't forget that other things are important too. The climate effect of the forest preservation and expansion is small - only about 0.1 °C. How do you value that against the mass loss of biodiversity, irrelplaceable ecosystems and ecosystem services that would be lost?

Saving or planting forests is not a panacea for climate change, but neither is it the enemy. Conserving forest is worthwhile for lots of other reasons, but we shouldn't kid ourselves that there wont be difficult decisions to make about protecting the unique forest habitats, especially tropical forests like the Amazon, and preventing climate change.
----------------
This blog was written by Cabot Institute member, T Davies-Barnard, University of Exeter.
T Davies-Barnard

Comments

Popular posts from this blog

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

What happens when you let PhD students and post-docs organise a meeting?

As plant science PhD students, we feel it is vital to share our research with other scientists to generate new ideas for collaborative projects. For this reason we decided to organise the ‘Innovations in Plant Science to Feed a Changing World’ workshop, which was held in the University of Bristol Biological Sciences department in February 2017. The delegates included early-career scientists from Kyoto University, Heidelberg University and of course the University of Bristol.

The University of Bristol has a long-standing partnership with Kyoto University and more recently, Heidelberg University, as our plant science groups share overlapping research areas. The main aim of the workshop was to encourage novel collaboration opportunities between the plant science groups, which would give rise to future projects, publications and ultimately funding.

Last year, Kyoto University hosted a highly engaging and productive workshop (see Sarah Jose’s blog post last year) for early-career scientist…