Skip to main content

Manufacturing in Bristol – Bridging the gap to a more sustainable and more resilient future

University of Bristol
The University of Bristol and partners announce the launch on 22 of April of a new collaborative research project to determine how highly adaptable manufacturing processes, capable of operating at small scales (re-distributed manufacturing), can contribute to a sustainable and resilient future for the city of Bristol and its hinterland. 

The next few years have the potential to be transformative in the history of our society and our planet.  We are faced with numerous choices in how we live our lives, and our decisions could either embed the practices of the last two centuries or empower new paradigms for the production of our food and energy, our buildings and transport systems, our medicine, furniture and appliance, all of those things on which we have grown to depend. It could be a transformation in what we own or borrow, how we use it…. And how we make it.

Bristol is one of the Rockefeller Foundation’s 100 Global Resilient Cities.  Unlike many of the other cities (and somewhat unconventionally), Bristol, the University of Bristol and its Cabot Institute have adopted a holistic definition of resiliency that includes not just adaptation to future change but also the contemporary behaviour that minimises the chances of future shocks.  Recognising that, the launch of the Bristol 2015 European Green Capital year focussed on the need to bridge the gap  between our resource intensive and environmentally harmful current behaviour and a more sustainable – and resilient – future.

This combination is key.  Increasingly we recognise that our non-sustainable behaviour could bring about dangerous climate change and resource stress. But we are also obtaining a sharper understanding of the limits of our knowledge. Unfortunately, our behaviour is not just threatening the security of our food, water and energy but is inducing a profound uncertainty in our ability to forecast and adapt to future change.  Not only does such radical uncertainty demand mitigative rather than adaptive action  but, where we fall short or the damage has already been done, it will require an equally radical emphasis on resiliency.

Bristol Energy Coop - community
owned energy
Part of Bristol’s path to achieving these goals of sustainability and resiliency is localism, including local production of food and energy, exemplified by the recent launch of a municipally-owned energy company  but also community-owned energy and food cooperatives.   Localism can only go so far in our highly interconnected and interdependent world, but it is undeniably one of Bristol’s strongest tools in empowering local communities and driving its own sustainability agenda while making us more resilient to external factors.  But why stop at food and energy?

Manufacturing has undergone a suite of radical transformations over the past decade, the potential of which are only now being harnessed across a range of manufacturing scales from high-value (such as Bristol’s aerospace industry) to SMEs and community groups.  Crudely put, the options for the manufacturer have traditionally been limited to moulding things, bashing things into shape, cutting things and sticking things together.  New technologies now allow those methods to be downscaled and locally owned. Other technologies, enabled by the exponential growth of computer power, are changing the manufacturing framework for example by allowing complex shapes to be made layer-by-layer through additive manufacturing.

Bristol Hackspace - example
of  the maker movement. Image
credit: Matthew Venn,
Bristol Hackspace
.
Crucially, these new technologies represent highly adaptable manufacturing processes capable of operating at small scales.  This offers new possibilities with respect to where and how design, manufacture and services can and should be carried out to achieve the most appropriate mix of capability and employment but also to minimise environmental costs and to ensure resilience of provision.  In short, manufacturing may now be able to be re-distributed away from massive factories and global supply chains back into local networks, small workshops or even homes. This has brought about local empowerment across the globe as exemplified by the Maker movement and locally in initiatives such as Bristol Hackspace.  These technologies and social movements are synergistic as localised manufacturing not only brings about local empowerment but fosters sustainable behaviour by enabling the remanufacturing and upcycling that are characteristic of the circular economy.

There are limits, however, to the reach of these new approaches if they remain dependent on traditional manufacturing organisations and systems into which we are locked by the technological choices made in two centuries of fossil-fuel abundance.  As well as the technologies and processes that we use, a better understanding of how to organise and manage manufacturing systems and of their relationship with our infrastructure and business processes is central to the concept of re-distributed manufacturing and its proliferation.  It requires not only local production but a fundamental rethinking of the entire manufacturing system.

A Bristol plastics manufacturer reshores
its manufacturing to the city. Image
credit: Bristol Post. Find out more.
This is the focus of our exciting new RCUK-funded project: it will create a network to study a whole range of issues from diverse disciplinary perspectives, bringing together experts in manufacturing, design, logistics, operations management, infrastructure, engineering systems, economics, geographical sciences, mathematical modelling and beyond.  In particular, it will examine the potential impact of such re-distributed manufacturing at the scale of the city and its hinterland, using Bristol as an example in its European Green Capital year, and concentrating on the issues of resilience and sustainability.

It seems entirely appropriate that Bristol and the SW of England assume a prominent leadership role in this endeavour.  In many ways, it is the intellectual and spiritual home of the industrial use of fossil fuels, responsible for unprecedented growth and prosperity but also setting us on a path of unsustainable resource exploitation.  Thomas Newcomen from South Devon produced arguably the first practical steam engine, leading to the use of fossil fuels in mining and eventually industry; in the late 1700s, coal-powered steam energy was probably more extensively used in SW England than anywhere in the world.  Continuing this legacy, Richard Trevithick from Cornwall developed high pressure steam engines which allowed the use of steam (and thus fossil fuels) for transportation, and of course Brunel's SS Great Western, built in Bristol, was the first vehicle explicitly designed to use fossil fuel for intercontinental travel.

University of Bristol students taking part
in an upcycling project.
Image credit Compass Project
But that legacy is not limited to energy production.  Abraham Darby, who pioneered the use of coke for smelting iron in Coalbrookdale, i.e. the use of fossil fuels for material production, had worked at a foundry in Bristol and was funded by the Goldney Family, among others.  He married fossil fuels to the production of materials and manufactured goods.

These are reasons for optimism not guilt.  This part of the world played a crucial role in establishing the energy economy that has powered our world.  On the back of that innovation and economic growth have come medical advances, the exploration of our solar system and an interconnected society.  That same creative and innovative spirit can be harnessed again.  And these approaches need not be limited to energy and materials; our colleagues at UWE been awarded funds under the same scheme to explore redistributed healthcare provision. The movement is already in place, exemplified by the more than 800 organisations in the Bristol Green Capital Partnership.  It is receiving unprecedented support from both Universities of this city.  This new project is only one small part of that trend but it illustrates a new enthusiasm for partnership and transformative change and to study the next generation of solutions rather than be mired in incremental gains to existing technology.
-----------------------------------------------
This blog is written by Cabot Institute Director Prof Rich Pancost and Prof Chris McMahon from the Engineering Department at the University of Bristol.

Prof Chris McMahon
Prof Rich Pancost












More information

For more information about the issues covered in this blog please contact Chris McMahon who is keen to hear from local industries and other organisations that may be interested in the possibilities of re-distributed manufacturing.

The grant has been awarded to the University of Bristol, supported by the Universities of Bath, Exeter and the West of England and Cardiff University, by the Engineering and Physical Sciences Research Council (EPSRC), supported by the Arts and Humanities Research Council (AHRC). The network, one of six being funded by the EPSRC for the next two years to study RDM, will also explore mechanisms by which interdisciplinary teams may come together to address societal grand challenges and develop research agendas for their solution. These will be based on working together using a combination of a Collaboratory - a centre without walls - and a Living Lab - a gathering of public-private partnerships in which businesses, researchers, authorities, and citizens work together for the creation of new services, business ideas, markets, and technologies.

EPSRC Reference: EP/M01777X/1, Re-Distributed Manufacturing and the Resilient, Sustainable City (ReDReSC)

The Cabot Institute

The Cabot Institute carries out fundamental and responsive research on risks and uncertainties in a changing environment. We drive new research in the interconnected areas of climate change, natural hazards, water and food security, low carbon energy, and future cities. Our research fuses rigorous statistical and numerical modelling with a deep understanding of social, environmental and engineered systems – past, present and future. We seek to engage wider society by listening to, exploring with, and challenging our stakeholders to develop a shared response to 21st Century challenges.

Comments

  1. This comment has been removed by the author.

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete
  3. Thank you for sharing this information really this is good and We are faced with numerous choices in how we live our lives, and our decisions could either embed the practices of the last two centuries or empower new paradigms for the production of our food and energy, our buildings and transport systems, Exel Alternator
    .. .

    ReplyDelete

Post a Comment

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…

Age of the Anthropocene

“We’ve killed off the dodo, released unprecedented levels of carbon dioxide into the atmosphere, and raised sea levels: welcome to the Anthropocene, the geological age in which humankind has permanently left our mark on the planet.”
This was the description I gave to my new unit ‘The Age of the Anthropocene’, hoping to catch the attention of second year students keen to explore the impact and meaning of global environmental change. It worked: students from History, English Literature, Religion and Theology, Philosophy, Ancient History, and Study Abroad students joined me this autumn to explore how the notion of the ‘Anthropocene’ has gained traction as a definition of time that recognises the unprecedented Earth-altering impact of the human species. We engaged with debates among scientists and humanities scholars over the concept, while also exploring how it has captured popular and scholarly imagination. 
One of the activities that I looked forward to was holding an inaugural Bristol ‘…