Skip to main content

Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene–Oligocene transition

Composite satellite image of what the Earth may have looked like prior to Antarctic
glaciation during the late Eocene (image by Alan Kennedy).
The Eocene-Oligocene Transition occurred approx. 34 million years ago and was one of the biggest climatic shifts since the end of the Cretaceous (with the extinction of the dinosaurs). The Earth dramatically cooled and the Antarctic ice sheet first formed, but the cause and nature of the cooling remain uncertain. Using a climate model, HadCM3L, we looked at the effect of ice sheet growth and palaeogeographical change (i.e. continental reconfiguration as Australia separated from Antarctica) on the Earth’s steady-state climate. We utilised four simulations: a late Eocene palaeogeography with and without an ice sheet and an early Oligocene palaeogeography with and without an ice sheet.

The formation of the Antarctic ice sheet causes a similar atmospheric response for both palaeogeographies: cooling of the air over Antarctica, intensification of the polar atmospheric cell and increased winds over the Southern Ocean. The sea surface temperature response to the growth of ice is very different, however, between the two palaeogeographies. For the Eocene palaeogeography there is a 6°C warming in the South Pacific sector of the Southern Ocean in response to ice growth, but very little change (or even a slight cooling) for the Oligocene palaeogeography. Why, under the same forcing (the appearance of the ice sheet), do these different palaeogeographies have such different sea surface temperature responses?

The stronger winds over the Southern Ocean force more-saline water from the southern Indian Ocean into the less-saline southern Pacific Ocean. This is particularly important for the Eocene simulations, where the narrow gap between Australia and Antarctica limits flow from the Indian to the Pacific Ocean. As salinity in the southern Pacific Ocean increases the water becomes denser and sinks, releasing heat. This accounts for the increase in sea surface temperature in the Eocene simulations. In the Oligocene simulations, flow is already much greater between the Indian and Pacific Oceans, and so there is no marked increase in density, sinking or sea surface temperature following glaciation. There is only a mild cooling due to the presence of the large, cold ice sheet.

Whether in reality the dominant ocean response to glaciation was warming or cooling may have impacted the growth of the ice sheet at this major transition in the Earth’s history. However, more importantly, this research highlights that sensitivity to subtle changes in palaeogeography can potentially have very large effects on the modelled climatic response to an event such as Antarctic glaciation. This could be very important for understanding palaeoclimate records and interpreting climate model results.

This research, carried out by Alan Kennedy, Dr Alex Farnsworth and Prof Dan Lunt of the Cabot Institute and University of Bristol with others, is featured in a special issue of the Philosophical Transactions of the Royal Society A. The full special issue on the theme of ‘Feedbacks on climate in the Earth System’ and the paper can be accessed here.

Special issue cover (image from Royal Society).
Citation: Kennedy A.T., Farnsworth A., Lunt D.J., Lear C.H., & Markwick P.J. (2015) Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene–Oligocene transition. Phil. Trans. R. Soc. A, 373, 20140419, doi:10.1098/rsta.2014.0419.
----------------------------
This blog is written by Alan Kennedy from the School of Geographical Sciences at the University of Bristol.  This blog post was edited from Alan's blog post at Ezekial Boom.
Alan Kennedy


Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c