Skip to main content

Thoughts on passing 400 ppm


In the next few days, the Mauna Loa atmospheric CO2 record will pass 400 ppm. This isn’t the first time that’s happened – we first crossed the 400 ppm threshold in May 2013, but the annual, saw-tooth variation in levels as the Northern hemisphere boreal forest breathes in and out has dipped us below 400 a couple of times since. This crossing is likely to be special however, as it is probably going to be the last time anybody alive today will experience an atmosphere with LESS than 400 ppm CO2.

Human emissions have been pushing up atmospheric levels by about 2.2 ppm every year in recent years, so normally we would expect the annual monthly minimum to increase to beyond 400 ppm from this year’s September minimum of 397.1 ppm, however we are in the midst of one of the largest El Nino years for over a decade, and the drought in the tropics during El Nino years slow the growth of trees relative to normal years, and increases fires. Previous strong El Nino years (like 1997) have helped to push the annual CO2 increase to a massive 3.7 ppm, and this year’s strong El Nino, coupled with increased forest burning in Indonesia, along with fossil fuel burning, have led Ralph Keeling to predict the annual rise could be as much as 4.4 ppm this year.

So why does it matter? 400 is in truth a fairly arbitrary value to get excited about, a neat quirk of our counting system and no more important as a value to the atmosphere than your car odometer ticking from 99,999 to 100,000. It doesn't mean the car is going to collapse, but it certainly catches your attention. It’s the same with the atmosphere – it gives us pause to consider what we’ve done, and what it might mean for the climate system. For me, the most outrageous thing is that we, an insignificant population of carbon based life forms, have managed to alter the chemical composition of the atmosphere! And not just by a little – by a lot! And let’s not forget that the atmosphere is big – really big!

To me, as an Earth Scientist that leads me to think about when in Earth history the planet has experienced such high levels of CO2 before. Measuring atmospheric CO2 in the geological past is tricky – for the past  ~800 thousand years we have a fantastic archive of trapped atmospheric gas bubbles in ice cores, and for the whole of that record CO2 never peaked above 300 ppm. Beyond the time for which we have the ice cores, we rely on geochemical proxies in marine and terrestrial sediments to estimate CO2 and that is the heart of my research. In a paper we published last year we showed that we have to go back to more than 2.3 Million years ago, to the very earliest Pleistocene and Pliocene to find atmospheric CO2 levels as high as we are about to permanently experience. What does that mean? Well the Pliocene was a similar world to today – the continents were in much the same place, the vegetation mix across this Earth was the same, except global temperatures were 2-3 degrees C higher than now, driven primarily by those high levels of CO2.

Another thing that strikes me today is how rapidly we've managed to change the atmosphere. In a little over 150 years since we started to burn fossil fuels with alacrity, we've gone from 280 ppm to 400 ppm. It’s hard to find geological records with the temporal precision to see changes that quick, but for sure we don’t know any time in Earth history when CO2 has changed so much, so quickly.

With COP21 in Paris just around the corner, perhaps saying goodbye to sub 400 ppm will focus minds to come up with a solution. I don’t know whether it will, or what a global solution would look like, but I hope beyond anything that we don’t do nothing.
-----------------
Cabot Institute member Dr Marcus Badger is a Research Associate in the Organic Geochemistry Group in the School of Chemistry. His research involves using biomolecules and climate models to better understand the Earth system.
Marcus Badger



Comments

  1. To me, the interesting thing about the Pliocene is the ~25m of sea level rise associated with only 2-3 degrees of warming. In my opinion we are all but guaranteed to see at least that amount of warming within a century or two with much of that the sea level rise following a millennia or two later. There is no way that today's coastal cities can adapt to that kind of SLR, so the writing really is on the wall for great cities like especially London and Shanghai (24 milliton people, average elevation 4 m) and Bangladesh with 168 million people, mostly living below 12 m.

    ReplyDelete

Post a Comment

Popular posts from this blog

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

What happens when you let PhD students and post-docs organise a meeting?

As plant science PhD students, we feel it is vital to share our research with other scientists to generate new ideas for collaborative projects. For this reason we decided to organise the ‘Innovations in Plant Science to Feed a Changing World’ workshop, which was held in the University of Bristol Biological Sciences department in February 2017. The delegates included early-career scientists from Kyoto University, Heidelberg University and of course the University of Bristol.

The University of Bristol has a long-standing partnership with Kyoto University and more recently, Heidelberg University, as our plant science groups share overlapping research areas. The main aim of the workshop was to encourage novel collaboration opportunities between the plant science groups, which would give rise to future projects, publications and ultimately funding.

Last year, Kyoto University hosted a highly engaging and productive workshop (see Sarah Jose’s blog post last year) for early-career scientist…