Skip to main content

Dadaism in Disaster Risk Reduction: Reflections against method

Much like Romulus and Remus, we the academic community must take the gift bestowed unto us by the Lupa Capitolina of knowledge and enact progressive change in these uncertain and complex times.

Reflections and introductions: A volta

The volta is a poetic device, closely but not solely, associated with the Shakespearean sonnet, used to enact a dramatic change in thought or emotion. Concomitant with this theme is that March is a month with symbolic links to change and new life. The Romans famously preferred to initiate the most significant socio-political manoeuvres of the empire during the first month of their calendar, mensis Martius. A month that marked the oncoming of spring, the weakening of winter’s grip on the land and a time for new life.

The need for change

Having very recently attended the March UKADR conference, organised by the Cabot Institute here in Bristol, I did so with some hope and anticipation. Hope and anticipation for displays and discussions that conscientiously touched upon this volta, this need for change in how we study the dynamics of natural hazards. The conference itself was very agreeable, it had great sandwiches, with much stimulating discussion taking place and many displays of great skill and ingenuity having been demonstrated. Yet, despite a few instances where this need for change was indirectly touched upon by a handful of speakers and displays, I managed to go the entirety of the conference without getting what I really wanted, an explicit discussion, mention, susurration of the role of emergence in natural disaster and resilience. 

Understanding the problem

My interest in this kind of science is essentially motivated by merit of my Ph.D. research, here at the School of Geographical Sciences in Bristol, broadly concentrating on modelling social influence on, and response to, natural perturbations in the physical environment, i.e. urban flooding scenarios. From the moment I began the preliminary work for this project, it has steadily transformed into a much more complex mise-en-abyme of human inter-social dynamics, of understanding how these dynamics determine the systems within which we exist, both social and physical, and then the broader dynamics of these systems when change is enacted from within and upon them externally. A discipline known broadly as Complex Physical and Adaptive Systems, of which a very close theoretical by-product is the concept of emergence

An enormous preoccupation throughout my research to this point has been in developing ways to communicate the links between these outlying concepts and those that are ad unicum subsidium. Emergence itself is considered a rather left-field concept, essentially because you can’t physically observe it happening around you. Defined, broadly, as a descriptive term whereby “the whole is greater than the sum of the parts”, it can be used to describe a system which is characterised by traits beyond those of the individual parts that comprise that system, some examples include a market economy, termite mounds, a rainforest ecosystem, a city and the internet. Applying this concept to human systems affected by natural disasters, to interpret the dynamics therein, is quite simple but due to the vast inter-disciplinary nature of doing so is seen as being a bit of an academic taboo.

A schematic representing the nature of a complex system. Vulnerability, Risk and hazards would co-exist as a supervenient, complex hierarchy. 

So then, I remind myself that I shouldn’t feel downhearted, I saw clear evidence that we, the academic community, are certainly asking the right questions now and more often than ever before; 
  • “How do we translate new methods for vulnerability and risk assessment into practice?” 
  • “Are huge bunches of data, fed through rigid equations and tried and tested methods, really all we need to reduce the impacts of vulnerability and exposure, or do we need to be more dynamic in our methods?”
  • “Are the methods employed in our research producing an output with which the affected communities in vulnerable areas can engage with? If not, then why not and how can this be improved?”

Moving forward

Upon reflection, this pleased me. These questions are an acknowledgement of the complex hazard systems which exist and indicate that we are clearly thinking about the links between ourselves, our personal environment and the natural environment at large. Furthermore, it is clear, from the themes within these questions, that academia is crawling its way towards accepted and mainstream interdisciplinary method and practice. I am pleased, though not satiated, as I witnessed a discussion in the penultimate conference session where “more data and community training” was suggested as a solution to ever-increasing annual losses attributable to natural disasters globally. I am inherently pessimistic, but I am as unconvinced by the idea of Huxleyesque, neo-Pavlovian disaster training for the global masses as I am unmotivated by the value of my research being placed in the amount of data it produces to inform such exercises!
“Don't judge each day by the harvest you reap but by the seeds that you plant.” - Robert Louis Stevenson (image is of The Sower, from The Wheat Fields series by Vincent Van Gough, June 1888 – source: Wikipedia.)  

Thus, it is as we now enter the month of April, mensis Aprilis, a month that is truly symbolic of Spring and one which embodies a time where new seeds are sewn carefully in the fields, where thorough work can take place and the seeds may be tended after the long wait for the darkness and cold of winter to pass; that we must consider the work that needs to be done in eliciting progressive change. Consider this volta, allow the warmth of the April showers to give life to the fresh seeds of knowledge we sow and may Ä’ostre assist us in the efficient reaping of the new knowledge we need to answer the most pressing questions in this world. At least before the data is stuck in a biblical excel spreadsheet and used to inform global anti-tsunami foot drills, or some such!

--------------------------
This blog was written by Cabot Institute member, Thomas O’Shea, a 2nd year Ph.D. Researcher at the School of Geographical Sciences, University of Bristol. His interests span Complex Systems, Hydrodynamics, Risk and Resilience and Machine Learning.  Please direct any desired correspondence regarding the above to his university email at: t.oshea@bristol.ac.uk
Thomas O'Shea

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos