Skip to main content

Will July’s heat become the new normal?

Saddleworth Moor fire near Stalybridge, England, 2018.  Image credit: NASA

For the past month, Europe has experienced a significant heatwave, with both high temperatures and low levels of rainfall, especially in the North. Over this period, we’ve seen a rise in heat-related deaths in major cities, wildfires in Greece, Spain and Portugal, and a distinct ‘browning’ of the European landscape visible from space.

As we sit sweltering in our offices, the question on everyone’s lips seems to be “are we going to keep experiencing heatwaves like this as the climate changes?” or, to put it another way, “Is this heat the new norm?”

Leo Hickman, Ed Hawkins, and others, have spurred a great deal of social media interest with posts highlighting how climate events that are currently considered ‘extreme’, will at some point be called ‘typical’ as the climate evolves.
As part of a two-year project on how future climate impacts different sectors (www.happimip.org), my colleagues and I have been developing complex computer simulations to explore our current climate as well as possible future climates. Specifically, we’re comparing what the world will look like if we meet the targets set out in the Paris agreement: to limit the global average temperature rise to a maximum of 2.0 degrees warming above pre-industrial levels but with the ambition of limiting warming to 1.5 degrees.

The world is already around 1 degree warmer on average than pre-industrial levels, and the evidence to date shows that every 0.5 degree of additional warming will make a significant difference to the weather we experience in the future.

So, we’ve been able to take those simulations and ask the question: What’s the probability of us experiencing European temperatures like July 2018 again if:

  1. We don’t emit any further greenhouse gases and things stay as they are (1 degree above pre-industrial levels).
  2. Greenhouse gas emissions are aggressively reduced, restricting global average temperature rise to 1.5 degrees above pre-industrial levels.
  3. Greenhouse gas emissions are reduced to a lesser extent, restricting global average temperature rise by 2 degrees above pre-industrial levels.

What we’ve found is that European heat of at least the temperatures we have experienced this July are likely to re-occur about once every 5-6 years, on average, in our current climate. While this seems often, remember we have already experienced 1C of global increase in temperature. We’ve also considered the temperature over the whole of Europe, not just focusing on the more extreme parts of the heatwave. If we considered only the hottest regions, this would push our current temperature re-occurrence times closer to 10-20 years. However, using this Europe-wide definition of the current heat event, we find that in the 1.5C future world, temperatures at least this high would occur every other year, and in a 2C world, four out of five summers would likely have heat events that are at least as hot as our current one. Worryingly, our current greenhouse gas emission trajectory is leading us closer to 3C, so urgent and coordinated action is still needed from our politicians around the world.
Our climate models are not perfect, and they cannot capture all aspects of the current heatwave, especially concerning the large-scale weather pattern that ‘blocked’ the cooler air from ending our current heatwave. These deficiencies increase the uncertainty in our future projections, but we still trust the ball-park figures.

Whilst these results are not peer-reviewed, and should be considered as preliminary findings, it is clear that the current increased heat experienced over Europe has a significant impact on society, and that there will be even more significant impacts if we were to begin experiencing these conditions as much as our analysis suggests.

Cutting our emissions now will save us a hell of a headache later.


-----------------------------
This blog is written by Dr Dann Mitchell (@ClimateDann) and Peter Uhe from the University of Bristol Geographical Sciences department and the Cabot Institute for the Environment.
Dann Mitchell
Peter Uhe


Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce