Skip to main content

Belo Monte: there is nothing green or sustainable about these mega-dams


File 20180807 191041 1xhv2ft.png?ixlib=rb 1.1
Google Maps

There are few dams in the world that capture the imagination as much as Belo Monte, built on the “Big Bend” of the Xingu river in the Brazilian Amazon. Its construction has involved an army of 25,000 workers working round the clock since 2011 to excavate over 240m cubic metres of soil and rock, pour three million cubic metres of concrete, and divert 80% of the river’s flow through 24 turbines.


The dam is located about 200km before the 1,640km Xingu meets the Amazon. kmusserCC BY-SA
Costing R$30 billion (£5.8 billion), Belo Monte is important not only for the scale of its construction but also the scope of opposition to it. The project was first proposed in the 1970s, and ever since then, local indigenous communities, civil society and even global celebrities have engaged in numerous acts of direct and indirect action against it.

While previous incarnations had been cancelled, Belo Monte is now in the final stages of construction and already provides 11,233 megawatts of energy to 60m Brazilians across the country. When complete, it will be the largest hydroelectric power plant in the Amazon and the fourth largest in the world.
Indigenous protests against Belo Monte at the UN’s sustainable development conference in Rio, 2012. Fernando Bizerra Jr / EPA

A ‘sustainable’ project?

The dam is to be operated by the Norte Energia consortium (formed of a number of state electrical utilities) and is heavily funded by the Brazilian state development bank, BNDES. The project’s supporters, including the governments of the Partido dos Trabalhadores (Workers’ Party) that held office between 2003 and 2011, have justified its construction on environmental grounds. They describe Belo Monte as a “sustainable” project, linking it to wider policies of climate change mitigation and a transition away from fossil fuels. The assertions of the sustainability of hydropower are not only seen in Brazil but can be found across the globe – with large dams presented as part of wider sustainable development agendas.

With hydropower representing 16.4% of total global installed energy capacity, hydroelectric dams are a significant part of efforts to reduce carbon emissions. More than 2,000 such projects are currently funded via the Clean Development Mechanism of the 1997 Kyoto Protocol – second only to wind power by number of individual projects.

While this provides mega-dams with an environmental seal of approval, it overlooks their numerous impacts. As a result, dams funded by the CDM are contested across the globe, with popular opposition movements highlighting the impacts of these projects and challenging their asserted sustainability.

Beautiful hill, to beautiful monster

Those standing against Belo Monte have highlighted its social and environmental impacts. An influx of 100,000 construction and service workers has transformed the nearby city of Altamira, for instance.

Hundreds of workers – unable to find employment – took to sleeping on the streets. Drug traffickers also moved in and crime and violence soared in the city. The murder rate in Altamira increased by 147% during the years of Belo Monte construction, with it becoming the deadliest city on earth in 2015.

In 2013, police raided a building near the construction site to find 15 women, held against their will and forced into sex work. Researchers later found that the peak hours of visits to their building – and others – coincided with the payday of those working on Belo Monte. In light of this social trauma, opposition actors gave the project a new moniker: Belo Monstro, meaning “Beautiful Monster”.

The construction of Belo Monte is further linked to increasing patterns of deforestation in the region. In 2011, deforestation in Brazil was highest in the area around Belo Monte, with the dam not only deforesting the immediate area but stimulating further encroachment.

In building roads to carry both people and equipment, the project has opened up the wider area of rainforest to encroachment and illegal deforestation. Greenpeace has linked illegal deforestation in indigenous reserves – more than 200km away – to the construction of the project, with the wood later sold to those building the dam.

Brazil’s past success in reversing deforestation rates became a key part of the country’s environmental movement. Yet recently deforestation has increased once again, leading to widespread international criticism. With increasing awareness of the problem, the links between hydropower and the loss of the Amazon rainforest challenge the continued viability of Belo Monte and similar projects.

Big dams, big problems

While the Clean Development Mechanism focuses on the reduction of carbon emissions, it overlooks other greenhouse gases emitted by hydropower. Large dams effectively emit significant quantities of methane for instance, released by the decomposition of plants and trees below the reservoir’s surface. While methane does not stay in the atmosphere for as long as carbon dioxide (only persisting for up to 12 years), its warming potential is far higher.

Belo Monte has been linked to these methane emissions by numerous opposition actors. Further research has found that the vegetation rotting in the reservoirs of dams across the globe may emit a million tonnes of greenhouse gases per year. As a result, it is claimed that these projects are – in fact – making a net contribution to climate change.

Far from providing a sustainable, renewable energy solution in a climate-changed world, Belo Monte is instead cast as exacerbating the problem that it is meant to solve.

The ConversationBelo Monte is just one of many dams across the globe that have been justified – and funded – as sustainable pursuits. Yet, this conflates the ends with the means. Hydroelectricity may appear relatively “clean” but the process in which a mega-dam is built is far from it. The environmental credentials of these projects remain contested, with Belo Monte providing just one example of how the sustainability label may finally be slipping.

---------------------------------
This blog is written by Cabot Institute member Ed Atkins, Senior Teaching Associate, School of Geographical Sciences, University of Bristol.  This article was originally published on The Conversation. Read the original article.
Ed Atkins

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c