Skip to main content

Tackling the climate crisis with energy transitions

Aerospace Engineering student Kieran Tait recently returned from a transformative journey through Western Canada, representing the University at the Energy Transitions summer school at the University of Alberta. A timely topic following the recent declaration of climate emergency here at the university.
Kieran underneath a glacier in Lake Louise, Banff National Park.
Throughout the two weeks, we endured a 40-hour lecture series, in which world-leading industry experts and researchers presented to us the current state of energy, the outlook for the future and an insight into different types of energy systems and their relative merits. This was superbly rounded off with insightful field trips including a tour around a wind farm and a hydroelectric dam, which really helped to contextualise the lectures.

The course was coordinated by the Worldwide Universities network, in which 21 representatives from 13 universities worldwide came together to study the practicalities of decarbonising society. The network brought a diversity of cultures and study areas together, which really shed light on the interconnectedness of the energy crisis and the need for mass mobilisation of society to focus minds on the solutions to the single biggest existential crisis humanity has ever faced. Climate breakdown.

The impending breakdown of our climate is an issue faced by every living being on Earth: no matter your nationality, race, gender, beliefs or background, the impacts of a warming world will completely transform your standard of living in the coming decades unless drastic steps are taken in the next 18 months to transition away from our current overconsuming, unsustainable way of life.

If we fail to meet this objective, we can expect unprecedented weather events, resulting in scarcity of basic human resources such as land, food and water, mass migration in the hundreds of millions and potentially the collapse of civilisation as we know it. Worse still, we can expect all of this as early as 2050 if action is not taken immediately. The seemingly impossible task imposed on our current generation is unparalleled in scale and complexity. It will require a collaboration among all disciplines and every nation on earth to achieve the sort of far reaching and functional solutions required to give us the best chance of limiting the warming trajectory preventing us from passing the point of no return.
Visiting the TransAlta wind farm in Pincher Creek, known as the Wind Capital of Canada.
The course in Energy Transitions provided me with the fundamental knowledge required to propose a logical working plan to phase out the current destructive energy policy and replace it with a more sustainable alternative. This included an overview of current climate science and projections for the future global energy mix, followed by an insight into a variety of energy production methods, including traditional fossil based systems such as coal, oil and gas and renewable types such as wind, solar, hydro, marine, geothermal, nuclear, biomass and hydrogen fuel cells.

The science behind each technology was explained thoroughly and the social, environmental and political implications associated with each type were also discussed. Also carbon sequestration methods such as Carbon Capture, Utilisation and Storage and land reclamation were explained to us in great depth, as it is clear that we need to not only reduce emissions to zero, but also begin to remove emissions that already exist in the atmosphere if we are to maximise our chances of staying below 1.5 degrees Celsius.

Alongside lectures, we also got the chance to go to Pincher Creek, a town in southern Alberta which is home to a large number of wind farm projects, making use of the region’s windy climate. We got the chance to visit a wind farm and go inside a turbine and we were also shown around a hydroelectric dam, bringing to life the concepts studied in lectures. Further to this we visited Waterton Lakes national park to experience some of the natural beauty Canada has to offer.
The group outside the house of the University’s founder Alexander Rutherford, before a ceremonial dinner.
When we returned, it was back to work as we all were tasked with presenting to the rest of the group, a proposal for energy transition solutions throughout different areas of the world. My team and I were given the job of proposing an EU wide energy transition plan. A timely subject following the newly appointed European Commissioner’s calls for a climate-neutral Europe by 2050. This task involved reviewing current policy and future goals, developing a sustainable infrastructure plan which would sufficiently meet increasing demand and discussing the issues associated with this transition.

Working with students from Spain, Ghana and Brazil led to some contrasting opinions and views on various subject matters, however the overwhelming consensus was that the transition had to phase out fossil fuels as soon as possible, acknowledging the need to sacrifice living standards in order to allow this rapid transition to happen. It is reassuring to know that despite our cultural differences, we all share the same view that action must be taken immediately, and we must undergo a process of degrowth to cut further emissions and keep temperature rises to a minimum to avert catastrophic climate change.

All in all, this course excelled at bringing like-minded inquisitive individuals together from a diversity of cultures and backgrounds to discuss the most pressing technological, political and ethical challenge humanity has ever faced. It’s admittedly a very frightening time to be a young person, but its undeniable that the times ahead present humanity with a chance to reach a new age in technological and cognitive ability and will allow for multi-national cooperation like the world has never seen before. I would like to thank the Worldwide Universities Network, the University of Alberta and everybody involved for making this incredible experience a possibility!

This blog is written by University of Bristol engineering student Kieran Tait. It’s fantastic to hear Kieran’s passion and enthusiasm for combating the climate crisis we are facing through engineering and renewable energy solutions. This is something that the University is highly committed to and this year world-leading renewable energy expert Andrew Garrad will be joining the Faculty as a visiting professor to enhance our teaching of sustainable energy not only to our engineering undergraduates but to students across the University. This blog has been reposted with kind permission from Kieran and the Faculty of Engineering blog. View the original post.

Popular posts from this blog

Converting probabilities between time-intervals

This is the first in an irregular sequence of snippets about some of the slightly more technical aspects of uncertainty and risk assessment.  If you have a slightly more technical question, then please email me and I will try to answer it with a snippet. Suppose that an event has a probability of 0.015 (or 1.5%) of happening at least once in the next five years. Then the probability of the event happening at least once in the next year is 0.015 / 5 = 0.003 (or 0.3%), and the probability of it happening at least once in the next 20 years is 0.015 * 4 = 0.06 (or 6%). Here is the rule for scaling probabilities to different time intervals: if both probabilities (the original one and the new one) are no larger than 0.1 (or 10%), then simply multiply the original probability by the ratio of the new time-interval to the original time-interval, to find the new probability. This rule is an approximation which breaks down if either of the probabilities is greater than 0.1. For example

1-in-200 year events

You often read or hear references to the ‘1-in-200 year event’, or ‘200-year event’, or ‘event with a return period of 200 years’. Other popular horizons are 1-in-30 years and 1-in-10,000 years. This term applies to hazards which can occur over a range of magnitudes, like volcanic eruptions, earthquakes, tsunamis, space weather, and various hydro-meteorological hazards like floods, storms, hot or cold spells, and droughts. ‘1-in-200 years’ refers to a particular magnitude. In floods this might be represented as a contour on a map, showing an area that is inundated. If this contour is labelled as ‘1-in-200 years’ this means that the current rate of floods at least as large as this is 1/200 /yr, or 0.005 /yr. So if your house is inside the contour, there is currently a 0.005 (0.5%) chance of being flooded in the next year, and a 0.025 (2.5%) chance of being flooded in the next five years. The general definition is this: ‘1-in-200 year magnitude is x’ = ‘the current rate for eve

Coconuts and climate change

Before pursuing an MSc in Climate Change Science and Policy at the University of Bristol, I completed my undergraduate studies in Environmental Science at the University of Colombo, Sri Lanka. During my final year I carried out a research project that explored the impact of extreme weather events on coconut productivity across the three climatic zones of Sri Lanka. A few months ago, I managed to get a paper published and I thought it would be a good idea to share my findings on this platform. Climate change and crop productivity  There has been a growing concern about the impact of extreme weather events on crop production across the globe, Sri Lanka being no exception. Coconut is becoming a rare commodity in the country, due to several reasons including the changing climate. The price hike in coconuts over the last few years is a good indication of how climate change is affecting coconut productivity across the country. Most coconut trees are no longer bearing fruits and thos