Skip to main content

Implementing volcanic hazard assessment operationally

Eyjafjallajökull volcano in IcelandImage credit: Boaworm
Following the 2010 eruption of the Eyjafjallajökull volcano in Iceland, the National Risk Register now lists volcanic hazards at the highest priority level. Volcanic hazard assessment draws together scientific knowledge of volcanic processes, observational evidence and statistical modelling to assess and forecast hazard and risk. Researchers at the University of Bristol have been central to the development of local, regional and global volcanic risk modelling over recent decades. One aspect of ongoing research is to develop a strategy for devising and implementing hazard assessments in an operational environment, to provide decision support during a volcanic crisis.

Cabot Professor Willy Aspinall
demonstrating the application of
Expert Elicitation in volcanic
hazard modelling at the OTVHA
workshop, Vienna, April 2014
Last week, I organised a workshop on Operational Techniques for Volcanic Hazard Assessment. The 2-day workshop, held in Vienna, Austria and supported by the European Geosciences Union and the Cabot Institute, brought together researchers from 11 institutions in eight countries to explore current practice in methods applied to operational and near-real time volcanic hazard assessment.  I was assisted in organising by Dr Jacopo Selva of INGV in Bolognia and speakers included Cabot Institute members Professor Willy Aspinall and Dr Thea Hincks, Dr Richard Luckett of the British Geological Survey and Dr Laura Sandri, of INGV, Italy.

There is a real gap between our ability to monitor and understand volcanic processes and our capacity to implement that understanding in a way that is useful operationally. In this workshop, we were able to bring together some of the leading researchers from around the world to explore how different tools and techniques are deployed. Better integration of these tools is essential for volcanic hazard forecasting to be useful for risk management.

The workshop involved discussion sessions and practical demonstrations of tools for real-time monitoring alerts, the use of expert judgment, Bayesian event tree scenario modelling and Bayesian belief network inference tools.  Dr Mike Burton from INGV Pisa, who took part in the workshop, said,

“It’s really important for volcanologists to engage with how our science can be adapted and incorporated in hazard assessments. The OTVHA workshop was a really useful exercise in exploring how our knowledge and uncertainty can be assimilated for real time decision support.”

Monitoring a volcano in Ethiopia
My research in Bristol concerns the interface between volcano monitoring data and hazard scenario models and I felt the workshop was a great success.  A few groups have developed approaches to modelling volcanic hazard and risk. This workshop provided a great forum for detailed discussion of how these tools and techniques can be combined and compared.  As scientists, we need to understand how to optimise and communicate our model output to be useful for decision makers.

Developing tools that are both scientifically and legally defensible is a major challenge in natural hazard science. The idea of organising the OTVHA workshop was to further explore the opportunities in addressing these challenges, which are central to the mission of the Cabot Institute. We’ve already started planning for the next workshop!

The OTVHA workshop was followed up with an associated session at the EGU General Assembly meeting, ‘Advances in Assessing Short-term Hazards and Risk from Volcanic Unrest or Eruption’, with a keynote presentation by Prof Chuck Connor on assessment of volcanic risk for nuclear facilities.

--------------------------------
This blog is written by Cabot Institute member Henry Odbert, School of Earth Sciences, University of Bristol.
Henry Odbert














----------------------------------

There are a few places left on the Cabot Institute Summer School on Risk and Uncertainty in Natural Hazards, featuring Willy Aspinall and other leading Cabot Institute academics.  Book your place now.

Comments

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…

Age of the Anthropocene

“We’ve killed off the dodo, released unprecedented levels of carbon dioxide into the atmosphere, and raised sea levels: welcome to the Anthropocene, the geological age in which humankind has permanently left our mark on the planet.”
This was the description I gave to my new unit ‘The Age of the Anthropocene’, hoping to catch the attention of second year students keen to explore the impact and meaning of global environmental change. It worked: students from History, English Literature, Religion and Theology, Philosophy, Ancient History, and Study Abroad students joined me this autumn to explore how the notion of the ‘Anthropocene’ has gained traction as a definition of time that recognises the unprecedented Earth-altering impact of the human species. We engaged with debates among scientists and humanities scholars over the concept, while also exploring how it has captured popular and scholarly imagination. 
One of the activities that I looked forward to was holding an inaugural Bristol ‘…