Skip to main content

Where does all the power go?

Ever wondered how much of your electricity bill goes on charging your laptop, or whether your TV is a bigger drain on your wallet than your kettle? I have…

A good basis to use in answering that question is the Annual ‘Energy Consumption in the UK’ report by DECC. Using their data on household electricity consumption, I’ve plotted a short history of UK electricity use by appliance. I’ve tried to aggregate similar devices together to create 6 categories: lighting, refrigeration, washing & drying, consumer electronics (TVs, consoles, device chargers), computing (desktops, laptops, monitors, printers) and cooking. It’s also important to note that this data is a total for all households in the UK, and is not taken on a per device basis.

The biggest individual energy guzzling devices today are TVs, refrigerators, halogen bulbs and power supply units (including chargers).

Some of this information isn’t surprising- refrigeration is notoriously expensive in physical terms, as it involves reversing a thermodynamic heat engine, in effect using energy to ‘suck’ the heat out of the colder compartment. Halogen bulbs are also commonly known as a large energy drain, due to their ubiquity and relatively low efficiency. Energy efficiency of both refrigeration and lighting have seen significant advances in the past few decades, and the relative drain on household energy of such devices reflects this.

I am, however, puzzled to see TVs on the list. The new generation of LED TVs and the advances in energy efficiency in electronics gave me the impression that these devices were far greener than their predecessors. In fact, the electricity used by TVs doubled between 1970 and 2000, and has almost tripled by 2012. I imagine this means that far more households have TVs now and that an increasing number of households own several. Even so, it is difficult to see why efficiency technology has not slowed the rate of growth of the electricity needs of televisions.

Laptops form a surprisingly small part of household electricity use, and power supply units (PSUs) and chargers appear to constitute a much larger energy drain. Perhaps the proliferation of smartphones and tablet PCs has something to do with this; the sheer number of devices that need charging may be the reason for the large increase in PSU consumption over the last few decades.

What can we take away from these statistics? On the surface, they hold few new suggestions in terms of how we should behave in order to save energy. It is common knowledge that one should boil as little water as possible in electric kettles, switch off devices and lights when they aren’t being used and purchase energy-saving devices instead of more power-hungry alternatives. However, these numbers do identify a large potential saving in energy consumption by switching to more efficient lighting methods and a significant rise in energy consumption by TVs and PSUs. The bottom line? Unplugging those idle device chargers won’t save the world from climate change, but it certainly could help.

This blog is written by Neeraj OakCabot Institute.

Neeraj Oak


  1. Your site growing Rapidly because you have much batter ideas so thanks for energy

  2. Amazing, having a backup lights in case of emergency like power shortage is good idea. These can helps you to provide the light that you needed.

  3. This comment has been removed by the author.

  4. Glad to read this meaningful article. nowadays, there are lots of products featuring energy conservation on the market such as energy-saving bulb,led night light etc.


Post a Comment

Popular posts from this blog

Bristol Future’s magical places: Sustainability through the eyes of the community

“What is science? Why do we do it?”. I ask these questions to my students a lot, in fact, I spend a lot of time asking myself the same thing.

And of course, as much as philosophy of science has thankfully graced us with a lot of scholars, academics and researchers who have discussed, and even provided answers to these questions, sometimes, when you are buried under piles of papers, staring at your screen for hours and hours on end, it doesn’t feel very science-y, does it?

 As a child I always imagined the scientist constantly surrounded by super cool things like the towers around Nicola Tesla, or Cousteau being surrounded by all those underwater wonders. Reality though, as it often does, may significantly differ from your early life expectations. I should have guessed that Ts and Cs would apply… Because there is nothing magnificent about looking for that one bug in your code that made your entire run plot the earth inside out and upside down, at least not for me.

I know for myself, I…

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here:
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

Dadaism in Disaster Risk Reduction: Reflections against method

Reflections and introductions: A volta The volta is a poetic device, closely but not solely, associated with the Shakespearean sonnet, used to enact a dramatic change in thought or emotion. Concomitant with this theme is that March is a month with symbolic links to change and new life. The Romans famously preferred to initiate the most significant socio-political manoeuvres of the empire during the first month of their calendar, mensis Martius. A month that marked the oncoming of spring, the weakening of winter’s grip on the land and a time for new life.
The need for change Having very recently attended the March UKADR conference, organised by the Cabot Institute here in Bristol, I did so with some hope and anticipation. Hope and anticipation for displays and discussions that conscientiously touched upon this volta, this need for change in how we study the dynamics of natural hazards. The conference itself was very agreeable, it had great sandwiches, with much stimulating discussion …