Skip to main content

How the great phosphorus shortage could leave us short of food

You know that greenhouse gases are changing the climate. You probably know drinking water is becoming increasingly scarce, and that we’re living through a mass extinction.

But when did you last worry about phosphorus?

It’s not as well-known as the other issues, but phosphorus depletion is no less significant. After all, we could live without cars or unusual species, but if phosphorus ran out we’d have to live without food.

Phosphorus is an essential nutrient for all forms of life. It is a key element in our DNA and all living organisms require daily phosphorus intake to produce energy. It cannot be replaced and there is no synthetic substitute: without phosphorus, there is no life.

Our dependence began in the mid-19th century, after farmers noticed spreading phosphorus-rich guano (bird excrement) on their fields led to impressive improvements in crop yields. Soon after, mines opened up in the US and China to extract phosphate ore – rocks which contain the useful mineral. This triggered the current use of mineral fertilisers and, without this industrial breakthrough, humanity could only produce half the food that it does today.

Testing crops in 1940s Tennessee. Franklin D. Roosevelt Presidential Library and Museum

Fertiliser use has quadrupled over the past half century and will continue rising as the population expands. The growing wealth of developing countries allows people to afford more meat which has a “phosphorus footprint” 50 times higher than most vegetables. This, together with the increasing usage of biofuels, is estimated to double the demand for phosphorus fertilisers by 2050.

Today phosphorus is also used in pharmaceuticals, personal care products, flame retardants, catalysts for chemical industries, building materials, cleaners, detergents and food preservatives.


Phosphorus is not a renewable resource


Reserves are limited and not equally spread over the planet. The only large mines are located in Morocco, Russia, China and the US. Depending on which scientists you ask, the world’s phosphate rock reserves will last for another 35 to 400 years – though the more optimistic assessments rely on the discovery of new deposits.

It’s a big concern for the EU and other countries without their own reserves, and phosphorus depletion could lead to geopolitical tensions. Back in 2008, when fertiliser prices sharply increased by 600% and directly influenced food prices, there were violent riots in 40 different developing countries.
Phosphorus also harms the environment. Excessive fertiliser use means it leaches from agricultural lands into rivers and eventually the sea, leading to so-called dead zones where most fish can’t survive. Uninhibited algae growth caused by high levels of phosphorus in water has already created more than 400 coastal death zones worldwide. Related human poisoning costs US$2.2 billion dollars annually in the US alone.

With the increasing demand for phosphorus leading to massive social and environmental issues, it’s time we looked towards more sustainable and responsible use.


There is still hope


In the past, the phosphorus cycle was closed: crops were eaten by humans and livestock while their faeces were used as natural fertilisers to grow crops again.

These days, the cycle is broken. Each year 220m tonnes of phosphate rocks are mined, but only a negligible amount makes it back into the soil. Crops are transported to cities and the waste is not returned to the fields but to the sewage system, which mainly ends up in the sea. A cycle has become a linear process.

We could reinvent a modern phosphorus cycle simply by dramatically reducing our consumption. After all, less than a third of the phosphorus in fertilisers is actually taken up by plants; the rest accumulates in the soil or is washed away. To take one example, in the Netherlands there is enough phosphorus in the soil today to supply the country with fertiliser for the next 40 years.

Food wastage is also directly linked to phosphorus overuse. In the most developed countries, 60% of discarded food is edible. We could also make agriculture smarter, optimising the amount of phosphorus used by specially selecting low-fertiliser crops or by giving chickens and pigs a special enzyme that helps them digest phosphorus more efficiently and therefore avoid extensive use of phosphorus-heavy growth supplements.


Original phosphorus cycle (left); the broken cycle (centre); and an optimised cycle (right). Author provided

It takes vast amounts of energy to transform phosphate ore into “elemental phosphorus”, the more reactive and pure form used in other, non-agricultural sectors. Inventing a quicker route from raw rocks to industrially-useful compounds is one of the big challenges facing the future generation. The EU, which only has minimal reserves, is investing in research aimed at saving energy – and phosphorus.

We could also close the phosphorus cycle by recycling it. Sewage, for instance, contains phosphorus yet it is considered waste and is mainly incinerated or released into the sea. The technology to extract this phosphorus and reuse it as fertiliser does exist, but it’s still at an early stage of development.

When considering acute future challenges, people do not often think about phosphorus. However, securing enough food for the world’s population is at least as important as the development of renewable energy and the reduction of greenhouse gases. To guarantee long-term food security, changes in the way we use phosphorus today are vital.
----------------------------------
This blog is written by Charly Faradji, Marie Curie Research Fellow, School of Chemistry, University of Bristol and Marissa de Boer, Researcher VU Amsterdam, Project Manager SusPhos, VU University Amsterdam
Charly Faradji
This article was originally published on The Conversation. Read the original article.

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c