Skip to main content

Natural Systems and Processes Poster Session

Natural Systems and Processes Poster Session 2015. Image credit Amanda Woodman-Hardy
The Natural Systems and Processes Poster Session (NSPPS) is, it appears, now quite an establishment in Bristol: 2016 will be the event’s ninth year. What is it, and what has secured its place in the University of Bristol calendar for all these years?

Well, as the name suggests, it is an academic poster session welcoming pretty much anything relating to the science of the natural world. It turns out this description covers a lot of science, with representatives from Earth Sciences, Geographical Sciences, Physics, Life Sciences, Engineering, Chemistry and Mathematics. It’s a fascinating melting pot of ideas with some quirky and abstract topics on show, but each being a tiny, crucial cogwheel in the Earth’s system. The range of topics can show off the University’s diverse scientific community, spark collaborations and simply baffle all at the same time.

Besides the ‘boring’ scientific part of the event, NSPPS is a great occasion. Set in the Wills Memorial Building Great Hall, there is a plentiful stock of free food and drink and the social side of the event is great. Often the people carrying out the research are even more colourful than the science itself (especially after some free drinks). The social side also ensures the whole event is very relaxed, making it a great opportunity to get some practice and early feedback on your poster and presentation skills before taking on external conferences. Maybe you’re thinking of going to EGU in April? Then this is the perfect warm up. Added to that, there is healthy competition with entrants battling it out for a series of prizes from staff and student votes for the best posters. They’re proper prizes too (I can verify, last year I won an Acer tablet for the staff vote), so it’s definitely worth entering!

So here’s why NSPPS is still live and kicking after 9 years: diverse science, diverse people, laid back atmosphere, prizes and (of course) free food and drink.

Where? When? Great Hall, Wills Memorial Building. 2 pm - 5 pm, Monday 7 March.
Abstract submission deadline: midnight, Friday 29 February.
Full details at
This blog is written by Alan Kennedy from the School of Geographical Sciences at the University of Bristol.  This blog post was edited from Alan's blog post at Ezekial Boom.
Alan Kennedy


Popular posts from this blog

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.


The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here:
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

MetroLabs visit: Sharing experiences of implementing smart cities

In December 2017 I was invited to take part in the Metro Lab Annual Summit, taking place in Georgia Tech in the United States. I thought it worthwhile to share a few of my own thoughts about the meeting and what can be drawn from the experience.

The MetroLab Network includes 41 cities and 55 universities within the United States that have formed city-university partnerships that focus on research, development and deployment projects to offer solutions to many of the challenges facing urban areas. These allow decision makers and researchers to work together within their cities to achieve better urban living, while being able to share best practice from each other’s experiences.

The visit was facilitated by the UK Science and Innovation Network, part of the Foreign and Commonwealth Office who provide opportunities for international collaboration. As well as delegates from the University of Bristol and Bristol City Council, we shared the visit with delegates from Glasgow and Strathclyde…