Skip to main content

Climate-driven extreme weather is threatening old bridges with collapse

The recent collapse of a bridge in Grinton, North Yorkshire, raises lots of questions about how prepared we are for these sorts of risks. The bridge, which was due to be on the route of the cycling world championships in September, collapsed after a month’s worth of rain fell in just four hours, causing flash flooding.

Grinton is the latest in a series of such collapses. In 2015, first Storm Eva and then Storm Frank caused flooding which collapsed the 18th century Tadcaster bridge, also in North Yorkshire, and badly damaged the medieval-era Eamont bridge in nearby Cumbria. Floods in 2009 collapsed or severely damaged 29 bridges in Cumbria alone.

With climate change making this sort of intense rainfall more common in future, people are right to wonder whether we’ll see many more such bridge collapses. And if so – which bridges are most at risk?
In 2014 the Tour de France passed over the now-destroyed bridge near Grinton. Tim Goode/PA
We know that bridges can collapse for various reasons. Some are simply old and already crumbling. Others fall down because of defective materials or environmental processes such as flooding, corrosion or earthquakes. Bridges have even collapsed after ships crash into them.

Europe’s first major roads and bridges were built by the Romans. This infrastructure developed hugely during the industrial revolution, then much of it was rebuilt and transformed after World War II. But since then, various factors have increased the pressure on bridges and other critical structures.
For instance, when many bridges were first built, traffic mostly consisted of pedestrians, animals and carts – an insignificant load for heavy-weight bridges. Yet over the decades private cars and trucks have got bigger, heavier and faster, while the sheer number of vehicles has massively increased.

Different bridges run different risks

Engineers in many countries think that numerous bridges could have reached the end of their expected life spans (between 50-100 years). However, we do not know which bridges are most at risk. This is because there is no national database or method for identifying structures at risk. Since different types of bridges are sensitive to different failure mechanisms, having awareness of the bridge stock is the first step for an effective risk management of the assets.


Newcastle’s various bridges all have different risks. Shaun Dodds / shutterstock

In Newcastle, for example, seven bridges over the river Tyne connect the city to the town of Gateshead. These bridges vary in function (pedestrian, road and railway), material (from steel to concrete) and age (17 to 150 years old). The risk and type of failure for each bridge is therefore very different.

Intense rain will become more common

Flooding is recognised as a major threat in the UK’s National Risk Register of Civil Emergencies. And though the Met Office’s latest set of climate projections shows an increase in average rainfall in winter and a decrease in average rainfall in summer, rainfall is naturally very variable. Flooding is caused by particularly heavy rain so it is important to look at how the extremes are changing, not just the averages.

Warmer air can hold more moisture and so it is likely that we will see increases in heavy rainfall, like the rain that caused the flash floods at Grinton. High resolution climate models and observational studies also show an intensification of extreme rainfall. This all means that bridge collapse from flooding is more likely in the future.

To reduce future disasters, we need an overview of our infrastructure, including assessments of change of use, ageing and climate change. A national bridge database would enable scientists and engineers to identify and compare risks to bridges across the country, on the basis of threats from climate change.



This blog is written by Cabot Institute member Dr Maria Pregnolato, Lecturer in Civil Engineering, University of Bristol and Elizabeth Lewis, Lecturer in Computational Hydrology, Newcastle University.  This article is republished from The Conversation under a Creative Commons license. Read the original article.
Dr Maria Pregnolato

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce