Skip to main content

Three history lessons to help reduce damage from earthquakes

Earthquakes don’t kill people,’ the saying goes. ‘Buildings do.’ There is truth in the adage: the majority of deaths during and just after earthquakes are due to the collapse of buildings. But the violence of great catastrophes is not confined to collapsed walls and falling roofs. Earthquakes also have broader effects on people, and the environments we live in.

The United Nations Economic and Social Commission for Asia and the Pacific (ESCAP)’s second Disaster Resilience Week starts in Bangkok on 26 August 2019. Practitioners and researchers have achieved great progress in reducing disaster risk over the past few decades, but we must do more to save lives and protect livelihoods.

Can history help?

Building against disaster

Buildings are a good, practical place to start.

Material cultures offer paths to resilience. A major example is traditional building styles that reduce the threat from seismic shaking. A building is not only a compilation of bricks and stones, but a social element that reflects the cultural life of a community. This is the powerful point made by the Kathmandu-based NGO, National Society for Earthquake Technology (NSET), in a recent report on traditional Nepalese building styles.

NSET, and others working in the field, have identified features of traditional building styles that limit damage during shaking. For example, diagonal struts distribute the load of a roof and limit damage during earthquake shaking.
Historic building with diagonal struts at Patan Durbar Square, Kathmandu, Nepal. Photo: Daniel Haines, 2017

This is important because parts of falling buildings often kill people.

Nearby, in the Himalayan kingdom of Bhutan, the royal government is investigating the earthquake-resistant features of traditional rammed-earth buildings.
An old (c. 400 years?) rammed-earth residential building near Paro, Bhutan. Photo: Daniel Haines, 2017

In fact, seismically-appropriate building styles have evolved along similar lines across a huge Eurasian arc of tectonic unrest, from Italy to Kashmir.

But in most countries, population pressure and the use of cheap, unreinforced concrete construction in growing towns and cities has crowded out traditional construction methods.

Reducing disaster risk always means weighing costs in the present against potential protection in the future. Recovering or encouraging traditional methods is potentially cheaper than enforcing modern seismic engineering.

Long-term health impacts

Focusing only on buildings, though, neglects other important aspects of large earthquakes. These shocks do not only shake buildings down, but can dramatically re-shape landscapes by causing huge landslides, changing the level of water in rivers and leading to flooding.

History shows that these changes can hurt people for months or years after the rubble of buildings have been cleared and reconstruction has begun.

For example, a giant (8.4 Mw) earthquake struck northeast India in 1897. Its epicentre was near Shillong, in the borderlands between British India and China. Luckily, the quake happened in the afternoon, so most people were out of doors. The official death toll – the number of deaths that the colonial government attributed directly to the earthquake – was around 1,500.

Yet officials also thought the poor health conditions that followed the earthquake and the substantial floods that it caused were largely responsible for a major cholera epidemic which killed 33,000 people in the Brahmaputra Valley during the same year. That is twice as many as the previous year.

From the available evidence, it is not yet clear how directly the earthquake and the cholera deaths were linked, but other examples saw similar scenarios. In 1934, another major (8.0 Mw) quake devastated parts of Nepal and North India.

This time, the official death toll in India was around 7,500, but again many more people died from related health complications over the following years. In one district in northern Bihar province, an average of 55,000 people died of fever every year over the next decade. In other areas, malaria was unusually prevalent over the same period.

Government reports held secondary effects of the earthquake responsible for the high death rate.
Events that happened long ago therefore demonstrate the complexity of earthquakes’ impacts, even on the relatively straightforward question mortality. Studying them highlights the need to focus present-day disaster responses on long-term health implications.

Of course, this says nothing of earthquakes’ less concrete, but very important, impacts on social structures, community life, governance or the economy.

History in action 

In some cases, historical researchers are contributing directly to initiatives to reduce risk from natural disasters.

Hurricane Katrina showed in 2005 that low-lying New Orleans is terribly vulnerable to storm surge and flooding. Craig Colten, a historical geographer at Louisiana State University, is working with a team of scientists to find solutions by raising the height of the ground in parts of the city while adding forested wetlands on its north shore. Colten is studying analogous historical efforts in other American cities – flood-control measures in nineteenth-century Chicago and responses to hurricanes in Galveston, Texas, around 1900 – as well as examining previous proposals for creating buffers between New Orleans and the sea.

These historical examples provide evidence of what works and what does not. They also highlight the politics of decision-making that help determine whether local communities will support landscape engineering projects.

The international frameworks governing disaster risk reduction such as the Sendai Framework for Disaster Risk Reduction and the Sustainable Development Goals understandably focus on the present, not the past. Historians need to join the conversation to show practitioners that lessons from the past can help build resilience in the future.

---------------------------------
This blog is written by Cabot Institute member Dr Daniel Haines, an environmental historian at the University of Bristol.
Dr Daniel Haines


Popular posts from this blog

The new carbon economy - transforming waste into a resource

As part of Green Great Britain Week, supported by BEIS, we are posting a series of blogs throughout the week highlighting what work is going on at the University of Bristol's Cabot Institute for the Environment to help provide up to date climate science, technology and solutions for government and industry.  We will also be highlighting some of the big sustainability actions happening across the University and local community in order to do our part to mitigate the negative effects of global warming. Today our blog will look at 'Technologies of the future: clean growth and innovation'.



On Monday 8 October 2018, the IPCC released a special report which calls upon world governments to enact policies which will limit global warming to 1.5°C compared with pre-industrial levels, failure to do so will drastically increase the probability of ecosystem collapses, extreme weather events and complete melting of Arctic sea ice. Success will require “rapid and far-reaching” actions in…

Bees and butterflies are under threat from urbanisation – here's how city-dwellers can help

All a-flutter. Shutterstock.
Pollinators such as bees, hoverflies and butterflies, are responsible for the reproduction of many flowering plants and help to produce more than three quarters of the world’s crop species. Globally, the value of the services provided by pollinators is estimated at between US$235 billion and US$577 billion.

It’s alarming, then, that pollinators are under threat from factors including more intense farming, climate change, disease and changing land use, such as urbanisation. Yet recent studies have suggested that urban areas could actually be beneficial, at least for some pollinators, as higher numbers of bee species have been recorded in UK towns and cities, compared with neighbouring farmland.

To find out which parts of towns and cities are better for bees and other pollinators, our research team carried out fieldwork in nine different types of land in four UK cities: Bristol, Reading, Leeds and Edinburgh.
An easy win Urban areas are a c…

Mothering Earth: Raising kids in uncertain times

Did you know women are more likely than men to be affected by climate change? UN figures indicate that 80% of people displaced by climate change are women. And in light of the recent strikes by children across the world, it is clear that it is the most pressing issue for a lot of children around the world. So then, what role do mothers play in guiding and supporting our children in a changing climate? And what is it like to know the dangers of climate change and bring up a child in an uncertain world?
The guilt You only have to visit forums like Mumsnet to see that climate change is being discussed quite frequently and with anxiety (for those who care) around how it will affect their children’s futures. As highlighted on the Victoria Derbyshire programme, young women across the world are contemplating whether to have kids at all for fear of how climate change will degrade their children’s lives. In fact a new group called BirthStrike has risen up in the belief that it would be unjust…