Skip to main content

World Water Day: Climate change and flash floods in Small Island Developing States

Pluvial flash flooding (otherwise known as flash flooding caused by rain) is a major hazard globally, but a particularly acute problem for Small Island Developing States (SIDS). Many SIDS experience extreme rainfall events associated with tropical cyclones (often referred to as hurricanes) which trigger excess surface water runoff and lead to pluvial flash flooding.

Following record-breaking hurricanes in the Caribbean such as Hurricane Maria in 2017 and Hurricane Dorian in 2019, the severe risk facing SIDS has been reaffirmed and labelled by many as a sign of the ‘new normal’ due to rising global temperatures under climate change. Nonetheless, in the Disaster Risk Reduction community there is a limited understanding of both current tropical-cyclone induced flood hazard and how this might change under different climate change scenarios, which inhibits attempts to build adaptive capacity and resilience to these events.

As part of the first year of my PhD research, I am applying rainfall data that has been produced by Emily Vosper and Dr Dann Mitchell in the University of Bristol BRIDGE group using a tropical cyclone rainfall model. This model uses climate model data to simulate a large number of tropical cyclone events in the Caribbean, which are used to understand how the statistics of tropical cyclone-induced rainfall might change under the 1.5C and 2C Paris Agreement scenarios. This rainfall data will be input into the hydrodynamic model LISFLOOD-FP to simulate pluvial flash flooding associated with hurricanes in Puerto Rico.

Investigating changes in flood hazard associated with different rainfall scenarios will help us to understand how flash flooding, associated with hurricanes, emerges under current conditions and how this might change under future climate change in Puerto Rico. Paired with data identifying exposure and vulnerability, my research hopes to provide some insight into how flood risk related to hurricanes could be estimated, and how resilience could be improved under future climate change.

This blog is written by Cabot Institute member Leanne Archer, School of Geographical Sciences,  University of Bristol.
Leanne Archer

Popular posts from this blog

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth? This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project . However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES). 1. Introduction: Factors, principles, and implications In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained belo

Farming in the Páramos of Boyacá: industrialisation and delimitation in Aquitania

Labourers harvest ‘cebolla larga’ onion in Aquitania. Image credit: Lauren Blake. In October and November 2019 Caboteer  Dr Lauren Blake  spent time in Boyacá, Colombia, on a six-week fieldtrip to find out about key socio-environmental conflicts and the impacts on the inhabitants of the páramos, as part of the historical and cultural component of her research project, POR EL Páramo . Background information about the research can be found in the earlier blog on the project website . Descending down the hill in the bus from El Crucero, the pungent smell of cebolla larga onion begins to invade my nose. The surrounding land transforms into plots of uniform rows of onion tops at various stages of growth, some mostly brown soil with shoots poking out along the ridges, others long, bushy and green. Sandwiched between the cloud settled atop the mountainous páramos and the vast, dark blue-green Lake Tota, all I can see and all I can smell is onion production. Sprinklers are scattered around, dr

IncrEdible! How to save money and reduce waste

The new academic year is a chance to get to grips with managing your student loan and kitchen cupboards. Over lockdown the UK wasted a third less food than we usually would. This is brilliant, as normally over 4.5 million tonnes of edible food is wasted from UK homes every year. For students, it’s even higher. The average cost of food waste per student per week is approximately £5.25 - that's about £273 per year !  It’s not just our bank accounts that are affected by food waste – it’s our planet too. The process of growing, making, distributing, storing and cooking our food uses masses of energy, fuel and water. It generates 30% of the world’s CO₂ greenhouse gas emissions. The same amount of CO₂ as 4.6 million return flights from London to Perth, Australia! So it makes sense to keep as much food out of the bin as possible, start wasting less and saving more.  Start the new term with some food waste busting, budget cutting, environment loving habits! Here’s five easy ways to reduce