Skip to main content

Warming up the poles: how past climates assist our understanding of future climate

Eocene, by Natural History Museum London
The early Eocene epoch (56 to 48 million years ago), is thought to be the warmest period on Earth in the past 65 million years. Geological evidence from this epoch indicates that the polar regions were very warm, with mean annual sea surface temperatures of > 25°C measured from geological proxies and evidence of a wide variety of vegetation including palm trees and insect pollinated plants found on land. Unfortunately, geological data from the tropics is limited for the early Eocene, although the data that does exist indicates temperatures only slightly warmer than the modern tropics, which are ~28°C.  The reduced temperature difference between the tropics and the poles in the early Eocene and the implied global warmth has resulted in the label of an ‘equable’ climate.

Simulating the early Eocene equable climate with climate models, however, has not been straightforward. There have been remarkable model-data differences with simulated polar temperatures are too cool and / or tropical temperatures that are too hot; or the CO2 concentrations used for a reasonable model-data match being outside the range of those measured for the early Eocene.

There are uncertainties in both geological evidence and climate models, and whilst trying to resolve the early Eocene equable climate problem has resulted in an improved understanding of geological data, there are uncertain aspects of climate models that still need to be examined.  Climate processes for which knowledge is limited or measurements are difficult, such as clouds, or which have a small spatial and temporal range are often simplified in climate models or parameterised. These uncertain model parameters are then tuned to best-match the modern observational climate record. This approach is not ideal, but it is sometimes necessary and it has been shown that the modern values of some parameters, such as atmospheric aerosols, may not be representative of past climates such as the early Eocene, with their removal improved the model-data match.

However, a climate model that can simulate both the present day climate and past more extreme climates without significant modification potentially offers a more robust method of understanding modern and future climate processes in a warming world. We have conducted research in which uncertain climate parameters are varied within their modern upper and lower boundaries in order to examine whether any of these combinations is capable of the above. And we have found one simulation, E17, from a total of 115, which simulates the early Eocene equable climate and improves the model-data match whilst also simulating the modern climate and a past cold climate, the last Glacial Maximum reasonably well.

This work hopefully highlights how paleoclimate modelling is a valuable tool in understanding natural climate variability and how paleoclimates can provide a test bed for climate models, which are used to predict future climate change.

This blog has been written by Nav Sagoo, Geographical Sciences, University of Bristol.
Nav Sagoo, University of Bristol

Popular posts from this blog

Bristol Future’s magical places: Sustainability through the eyes of the community

“What is science? Why do we do it?”. I ask these questions to my students a lot, in fact, I spend a lot of time asking myself the same thing.

And of course, as much as philosophy of science has thankfully graced us with a lot of scholars, academics and researchers who have discussed, and even provided answers to these questions, sometimes, when you are buried under piles of papers, staring at your screen for hours and hours on end, it doesn’t feel very science-y, does it?

 As a child I always imagined the scientist constantly surrounded by super cool things like the towers around Nicola Tesla, or Cousteau being surrounded by all those underwater wonders. Reality though, as it often does, may significantly differ from your early life expectations. I should have guessed that Ts and Cs would apply… Because there is nothing magnificent about looking for that one bug in your code that made your entire run plot the earth inside out and upside down, at least not for me.

I know for myself, I…

The new carbon economy - transforming waste into a resource

As part of Green Great Britain Week, supported by BEIS, we are posting a series of blogs throughout the week highlighting what work is going on at the University of Bristol's Cabot Institute for the Environment to help provide up to date climate science, technology and solutions for government and industry.  We will also be highlighting some of the big sustainability actions happening across the University and local community in order to do our part to mitigate the negative effects of global warming. Today our blog will look at 'Technologies of the future: clean growth and innovation'.



On Monday 8 October 2018, the IPCC released a special report which calls upon world governments to enact policies which will limit global warming to 1.5°C compared with pre-industrial levels, failure to do so will drastically increase the probability of ecosystem collapses, extreme weather events and complete melting of Arctic sea ice. Success will require “rapid and far-reaching” actions in…

Will July’s heat become the new normal?

For the past month, Europe has experienced a significant heatwave, with both high temperatures and low levels of rainfall, especially in the North. Over this period, we’ve seen a rise in heat-related deaths in major cities, wildfires in Greece, Spain and Portugal, and a distinct ‘browning’ of the European landscape visible from space.

As we sit sweltering in our offices, the question on everyone’s lips seems to be “are we going to keep experiencing heatwaves like this as the climate changes?” or, to put it another way, “Is this heat the new norm?”

Leo Hickman, Ed Hawkins, and others, have spurred a great deal of social media interest with posts highlighting how climate events that are currently considered ‘extreme’, will at some point be called ‘typical’ as the climate evolves.
In January 2007, the BBC aired a special programme presented by Sir David Attenborough called "Climate Change - Britain Under Threat".

It included this imagined weather forecast for a "typical s…