Skip to main content

Why the Pliocene period is important in the upcoming IPCC report

Critical to our understanding of the Earth system, especially in order to predict future anthropogenic climate change, is a full comprehension of how the Earth reacts to higher atmospheric CO2 conditions. One of the best ways to look at what the Earth was like under higher CO2 is to look at times in Earth history when atmospheric CO2 was naturally higher than it is today. The perfect period of geological history is the Pliocene, which spans from 5.3 – 2.6 million years ago. During this time we have good evidence that the Earth was 2-3 degrees warmer than today, but other things, such as the position of the continents and the distribution of plants over the surface, was very similar to today.

There is therefore a significant community of oceanographers and climate modellers studying the Pliocene, many of whom were in Bristol last week for the 2nd Workshop on Pliocene climate, and one of the main points of discussion was the exact value of CO2 for the Pliocene.

80 top scientists from 12 countries gathered for the 2nd Workshop on Pliocene climate on 9-10 September 2013 at the University of Bristol
The imminent release of the first volume of the 5th assessments of the IPCC is also expected to include sections on Pliocene climate.

Today we published a paper in Philosophical Transactions of the Royal Society A which therefore represents an important contribution to the debate. Several records of Pliocene CO2 do exist, but their low temporal resolution makes interpretation difficult. There has also been some controversy about what these records mean, as some show surprisingly high variability, given what we understand about Pliocene climate.

We sampled a deep ocean core taken by the Ocean Drilling Program in the Carribean Sea. Cores such as this record the ancient envrionment as sediment collects over time like the progressive pages in a book, and by analysing the chemical composition of the layers a history of the Earth System can be discovered. The approach that Badger et al take is to use the carbon isotopic fractionation of photosynthetic algae, which has been shown to vary with atmospheric CO2.

What this study revealed is that atmospheric CO2 was actually quite low, at around 300 ppm for much of the warm period. What was also revealed was that CO2 was relatively stable, in contrast to previous work. This implies that in the Pliocene the Earth must have been quite sensitive to CO2, as small changes in atmospheric CO2 drove changes in climate. The study of Badger et al doesn't explicitly reconstruct climate sensitivity but it does have important implications for future change.

The paper is published in a special volume of Philosophical Transactions of the Royal Society A, edited by Bristol scientists Dan Lunt, Rich Pancost, Andy Ridgewell and Harry Elderfield of Cambridge University. The volume is the result of the Warm Climates of the Past – A lesson for the Future? meeting which took place at the Royal Society in October 2011. The volume can be accessed here: http://bit.ly/PTA2001

Marcus Badger

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c