Skip to main content

How the UK government is tackling climate change – a good plan or on course for disaster?

Steve Smith, CCC
Steve Smith, a researcher working for the government’s independent advisors, the Committee on Climate Change (CCC), came to visit the Cabot Institute on 7 February 2014.  His talk was about whether the UK is on course for tackling climate change, or rather, the UK is on course for meeting its 2050 target of 80% reduction in carbon emissions.  It was a real eye opener.  Here I summarise the talk and the main points made by Steve.  All figures taken from Steve’s talk.

Background

The CCC consists of several high profile board members, including Lord Deben, Sir Brian Hoskins, and Lord Krebs amongst others.  As a group, their role on the mitigation side is to independently advise the government on UK emission targets.  The UK is legally bound to meet the 2050 target of 80% reduction of CO2 emissions below 1990 levels.  Being legally bound to this commitment means the government has to meet this target.  Steve wasn’t quite sure what the implications would be if the UK government broke the law by not meeting the emissions target by 2050. [Update: the EU has now agreed to a 40% reduction in emissions by 2030].

Extreme weather events will become
more common
The current risk of impacts from climate change are set out in the latest IPCC reports.  It is agreed that 2 degrees of warming will exacerbate current climate-related impacts such as increased risk of floods, drought, food insecurity, human displacement, plant and animal disease, etc but that technological advances and human resilience should be able to live with this. Beyond 4 degrees rise many systems will just not be able to adapt – a blunt warning if there ever was one.

The current 2050 target of 80% reduction of emissions keeps it in line with a 2 degree warming scenario. This equates to approximately 20 - 24 GT CO2 Kyoto emissions by 2050, which itself implies that each person living on the planet in 2050 will only contribute 2 tonnes of CO2 per year.  This is a similar figure to 6000 miles in your car (an easy annual commuting amount).  Steve pointed out that the total emissions from electricity in 2010 were almost the same amount as total emissions that will be allowed in 2050.  This is not a joke, we will have to meet these targets and we will have to severely cut our carbon emissions.  So what I want to know is what’s the plan?

What is the government doing?

It seems the government does have a plan and it has had a plan for a few years now.  A long and winding road sort of plan (it stretches 40 years and Steve also admitted that the plan is likely to change over that time period), but it’s a plan nonetheless with a hopeful outcome. Currently the government looks at reducing CO2 emissions by implementing cost effective measures across the economy.  Examples include increased implementation of electrification and Carbon Capture and Storage (CCS) within industry, and district heating and air source heat pumps for buildings.

Nuclear power could
help decarbonise the UK
Looking at one of these key measures in more detail, electrification, it is vitally important to not only increase reliance on electricity as a power source (rather than gas or oil) but also to decarbonise electricity production, producing a win-win situation.  The government aims to do this in steps.  The first step is the decarbonisation of base load electricity production into the 2020s.  Base load electricity is the minimum amount of power made to meet minimum demands from users.  Increasing nuclear power could play a big part in this transition.  From the 2020s onwards, the government will aim to decarbonise peak electricity, the stuff that’s needed on-demand like when we switch on our kettles during an ad-break.  The timescales do seem quite long but it takes around 9 years to build a nuclear power station, so put it in perspective the timings aren’t actually that long.  However it is questionable whether we can actually wait until 2050 to become decarbonised for fear of hitting that 4 degree global temperature rise in the meantime. 

Decarbonising electricity is one of the most useful things the government can do especially as most fossil fuel driven machines can be electrified – including our cars.  Steve admitted there was one area that was proving difficult to decarbonise – the aviation and shipping sector.  The CCC are still working out how to make this area more efficient as it is a really difficult sector to change.

What are the costs to the UK economy?

The CCC estimates that the resource cost of reducing CO2 from all sectors would amount to 0.5% GDP.  If there was a scenario in the future of high fuel prices, this cost would drop to 0.1% GDP, but if fuel prices came down we would pay more - around 0.8% GDP. Rather interestingly, 0.6% of costs of reducing CO2 fall in the power sector. So should the government put up the cost of fuel to reduce the resource cost to the UK as a whole?  It’s not as clear cut as that.  Fuel poverty and economic competitiveness are huge issues which need to be carefully considered before any price hikes.

The CCC is confident that all government projections will be wrong by 2050. To counter this the CCC have come up with some bottom up scenarios – Max (decarbonise everything), Stretch (optimistic carbon reduction but not ideal), Barrier (the most likely scenario but the worst for CO2 savings).  By mixing and matching these scenarios across all sectors as appropriate, multiple scenarios have been created and it is from these multiple scenarios that the CCC can keep resource cost below 1% GDP for the UK.  

How are we doing so far?

We're doing well to decarbonise our cars.
Image by Danrok, Wikimedia Commons
From the first period 2008 – 2012, the first carbon budget was met. Greenhouse gas emissions were reduced.  However, the main cause of this has been attributed to the recession and only 1% of emission reduction was from low carbon energy measures

The good news is that the UK is ahead of schedule on the decarbonisation of cars. However we are falling behind on non-traded emissions such as cavity insulation. We are looking like we will be on target for the second budget (2013 – 2017) but not budgets 3 (2018 – 2022) or 4 (2023 – 2027).  If the UK is to meet these targets then the government needs to improve future policies and speed up the rate of change to a decarbonised society.

Shale gas – a game changer?

The USA has kicked heavy emission coal off the system by investing heavily in shale gas (aka fracking) and in doing so has radically (and unwittingly) changed its climate policy.  Steve questioned whether shale gas could be a game changer in the UK.  Rather interestingly, it seems that not much extra gas will be produced in the UK by 2035 if shale gas was put into the mix.  UK gas demand turns out to be significantly higher than what the UK can actually produce (including that from shale). Questions then arise, for example, if you are offsetting imports of gas where are those imports coming from? How are they being transported?  What amount of CO2 is being released in the process of transportation? 

Methane leakage from shale gas is also a problem.  The CCC have found that methane leakage from shale gas would be more beneficial to decarbonisation due to the overall emissions from shale gas being less than the amount of emissions from current transportation of Liquified Natural Gas (which has a much smaller amount of methane leakage and larger amount of emissions overall). Any reduction is better than no reduction and the government thinks that a well regulated shale gas industry could help the UK reach those decarbonisation targets.

A healthy low carbon diet

Image by Richard Croft, Wikimedia Commons
Decarbonising the UK is going to be tough but there are net benefits from doing so.  One of these net benefits is health.  Although it is difficult to quantify the health impact of all CO2 emission reducing methods, we can quantify those such as reducing congestion, improving air quality, and getting people on their bikes doing more exercise.

A question was asked of Steve at the end of the talk...why are we not efficient in all of these sectors already?  Steve responded that people don’t act entirely rationally, that decarbonisation takes time to filter into people’s mindsets and that subsidies for the wrong sorts of fuels does not help.

So should the government do more to embed a low carbon mindset into its people and industry? Or should we be educating ourselves and personally reducing our own carbon emissions (the non-traded emissions)?  Should we just demand more of our government, put the pressure on the policy makers and inspire current and future generations to do more and be more in a low carbon world? The CCC and the government doesn’t have all the answers.  It’s up to research institutions, like the Cabot Institute, to put their collective heads together to develop solutions to help decarbonise society and to engineer new low carbon technologies, with support from government and industry.   

The UK has become a lot more efficient since the 2050 targets were introduced, the government is legally bound to meet these targets so it is serious about the job in hand, and as a result its policies have been changing to reduce emissions.  The government just has to ensure it continues to act on the CCC’s recommendations.   

View the slides from Steve's talk.

This blog was written by Amanda Woodman-Hardy, Cabot Institute Administrator, University of Bristol.
Follow @Enviro_Mand
Amanda Woodman-Hardy

Comments

  1. Great report. I think the idea of the USA kicking coal "off the system" by investing heavily in shale gas is problematic though. It's my understanding that increased gas use has reduced coal burn in the US, but not coal extraction. The coal mining has continued but now exports are at record highs.

    The Earth system doesn't care where or who burns the fossil carbon, just how much is burnt - which basically equals the amount extracted. Instead of the current focus on demand and consumption, I think we should pay more attention to the supply side, to extraction.

    For example, whilst the UK has the climate change act to reducing our emissions, we have no similar limits on carbon extraction. This leads to be perverse situation where we are offering public subsidy and tax breaks to North Sea oil and gas and to shale oil in order to increase the extraction of fossil carbon - which will ultimately be burnt.

    ReplyDelete
  2. i m feel so happy when read your blog which provide so good & informatics content Thanks for sharing Such as information.solar panels for schools

    ReplyDelete

Post a Comment

Popular posts from this blog

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.

Mor…

Age of the Anthropocene

“We’ve killed off the dodo, released unprecedented levels of carbon dioxide into the atmosphere, and raised sea levels: welcome to the Anthropocene, the geological age in which humankind has permanently left our mark on the planet.”
This was the description I gave to my new unit ‘The Age of the Anthropocene’, hoping to catch the attention of second year students keen to explore the impact and meaning of global environmental change. It worked: students from History, English Literature, Religion and Theology, Philosophy, Ancient History, and Study Abroad students joined me this autumn to explore how the notion of the ‘Anthropocene’ has gained traction as a definition of time that recognises the unprecedented Earth-altering impact of the human species. We engaged with debates among scientists and humanities scholars over the concept, while also exploring how it has captured popular and scholarly imagination. 
One of the activities that I looked forward to was holding an inaugural Bristol ‘…