Skip to main content

Crisis in Ukraine: The energy implications

Energy security- a primarily theoretical concept in recent years that has been made startlingly real by the recent developments in Ukraine. But what could the possible repercussions of this crisis be on European energy policies and our fuel bills?

I had a chance to ask this question during a recent event at the House of Commons, hosted by the APPCCG and Sandbag. The answer surprised me.

According to Baroness Worthington, director of Sandbag and member of the House of Lords, two outcomes are broadly possible.

Figure 1: Map of Ukraine 

The first scenario is of a stabilisation of the diplomatic situation and the emergence of a westward-leaning Ukraine. In this situation, it is likely that Ukraine might choose to exploit its own natural gas reserves, estimated to be in the region of 1.1 trillion cubic metres. Ukraine possesses the 26th largest natural gas reserve in the world, which is estimated to be more than half the size of the combined reserves of the EU.

If Ukraine `turns on the taps’, this would solve their immediate energy dependence on Russia and produce a revenue stream to support their economy. However, exploiting natural resources on the scale required would require significant investment, and Ukrainians would have to accept the change in land use and economic transformations that come with becoming a major energy exporter.

This optimistic outcome seems open to several criticisms. It’s unclear at this moment where investment would come from, and whether Russia would oppose competition in the European energy market. Moreover, can Ukraine ever completely replace Russia as an energy supplier? For instance, Russia’s natural gas reserves are around 40 times the size of Ukraine’s.

The second scenario is of a destabilised Ukraine, whose policies are influenced to a significant degree by Moscow. In this situation, European nations would need to purchase natural gas in the short-to-medium term from Russia and Ukraine, and tamely accept price rises and the uncertainty and energy insecurity that comes with dependence on a foreign nation for energy supplies.

This second possibility may also be criticised; Russia may not have further demands after the annexation of Crimea is completed. It may be the case that Russia wish to return to business as usual as quickly as possible, and may choose to offer energy supplies on favourable terms to Europe in order to encourage the resumption of trade and renewed trust.

In my view, both scenarios will result in one predominant outcome: the loss of trust. It seems unlikely that Russia can regain the trust of the West quickly; by it’s very nature, trust takes years to accrue and moments to lose. Energy security will become a much larger talking point in the next few years if relations with Russia continue to remain cool. Nations that previously were willing to base their energy supply on foreign gas purchases will choose instead to pay a price or environmental premium to source those supplies from more trusted sources.

The nations most likely to make changes to their energy mix as a result of this crisis are Germany and Poland. Germany’s choice to abandon nuclear fission after the Fukushima crisis leaves them slightly more vulnerable to a loss of fuel supplies from abroad, and they may choose to shift further towards renewables, or attempt the politically difficult U-turn of returning to nuclear power. Poland uses natural gas and coal to power much of its economy, a significant portion of which is purchased from Russia. Since the fall of the Soviet Union, Poland has been consistently suspicious of Russia, and may decide that now is the time to reduce or remove their dependence on Russian supplies.

Figure 2: DECC figure for natural gas supplies by source, 2010-2013

As for the fuel bills of UK consumers, it’s unlikely that we will see any immediate effects. If sanctions on Russia are imposed, this may raise gas prices worldwide, but the UK does not directly obtain its supplies from Russia. The most likely change to the UK’s energy mix will be one that was on the cards already- an expansion in the exploitation of shale gas. Using energy security as a primary argument, supporters of shale gas may now find it easier to convince others that fracking and onshore gas exploitation should continue or be accelerated.

Perhaps the Ukraine crisis will be the public relations coup the shale gas industry has been looking for. 

This blog is written by Neeraj Oak, Cabot Institute.
Neeraj Oak


  1. I really appreciate it that you shared with us such a informative post. Thanks for pv


Post a Comment

Popular posts from this blog

A response to Trump's withdrawal from the Paris Agreement

The decision by President Trump to withdraw from the Paris Agreement on Climate Change puts the United States at odds with both science and global geopolitical norms.  The fundamentals of climate change remain unambiguous: greenhouse gas concentrations are increasing, they are increasing because of human action, the increase will cause warming, and that warming creates risks of extreme weather, food crises and sea level rise. That does not mean that scientists can predict all of the consequences of global warming, much work needs to be done, but the risks are both profound and clear. Nor do we know what the best solutions will be - there is need for a robust debate about the nature, fairness and efficacy of different decarbonisation policies and technologies as well as the balance of responsibility; the Paris Agreement, despite its faults with respect to obligation and enforcement, allowed great flexibility in that regard, which is why nearly every nation on Earth is a signatory.


The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.
Details of this technology can be found in our official press release here:
Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:
“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellite…

What happens when you let PhD students and post-docs organise a meeting?

As plant science PhD students, we feel it is vital to share our research with other scientists to generate new ideas for collaborative projects. For this reason we decided to organise the ‘Innovations in Plant Science to Feed a Changing World’ workshop, which was held in the University of Bristol Biological Sciences department in February 2017. The delegates included early-career scientists from Kyoto University, Heidelberg University and of course the University of Bristol.

The University of Bristol has a long-standing partnership with Kyoto University and more recently, Heidelberg University, as our plant science groups share overlapping research areas. The main aim of the workshop was to encourage novel collaboration opportunities between the plant science groups, which would give rise to future projects, publications and ultimately funding.

Last year, Kyoto University hosted a highly engaging and productive workshop (see Sarah Jose’s blog post last year) for early-career scientist…