Skip to main content

2nd Generation biofuels: a transdisciplinary dialogue


“Globally, there are politically important evidence gaps, but nationally, those evidence gaps are just not important enough for policy-makers to take account of them”.  

This was one comment summing up the discussion I had at a workshop on the development of 2nd generation, or cellulosic, biofuels (biofuels produced from crops or waste, that is not otherwise used as food).  The workshop’s aim was to produce ‘A transdisciplinary dialogue on the opportunities and challenges of cellulosic ethanol in the UK’, and was run by Dr. Kate Millar, the Director of the Centre for Applied Bioethics.  It was part of a number of events convened for the EU Framework 7 project, “Integrated EST-Framework” (EST-Frame).  Bringing together 12 scientists, engineers, environmental scientists and social scientists is not an easy feat, but the 24 hours’ of the workshop produced some extremely interesting discussions.

My own research considers endeavours to overcome some of the sustainability problems commonly associated with 1st generation biofuels (e.g. sugarcane and wheat), and so I was particularly interested in how the development of 2nd generation biofuels might change the sustainability landscape. Would many of the problems associated with biofuels in general – increased greenhouse gas (GHG) emissions when compared with fossil fuels, land grabbing, food insecurity and biodiversity loss – disappear if we were to start producing 2nd generation biofuels? 

Policy problems 


Oilseed rape grown for  1st
generation biofuel has limitations.
Image credit: Richard Webb
Much of the first day of the workshop was spent discussing ‘policy problems’ that would need to be overcome for the successful production of cellulosic biofuel for consumption in the UK. 2nd generation biofuels have not been viably commercialised to date largely because of the cost of production.  But this is not the only policy problem to be overcome.  2nd generation biofuel will not only come from ‘waste’, but also from crops, such as miscanthus, which are specifically grown as biofuel feedstock.  But policies to encourage the use of crop residues for biofuels, depend, first, upon the categorisation of the cellulose left behind in the farming of particular crops as ‘waste’ and, second, upon a decision that the ‘best’ use of that waste is its conversion to energy.  This decision may, in turn, depend upon an assumption relating to national energy security.

2nd generation biofuels can be made
from farm waste such as wood chips,
and residual non-food parts of crops
 
(e.g. stemsleaves and husks).

Image credit: Innovationdiaries.com
When discussing the problems that would need to be overcome for the production of 2nd generation biofuel, it soon became clear that our own understanding of the problems depended upon the frames through which they were envisioned, and/or the assumptions that might be made in even categorising them as problems in the first place. Such frames and assumptions need to be unpicked when making policy decisions relating to, for example, the ‘best’ use of land, the ‘best’ conversion processes, displacement effects resulting from the adoption of those policies, and the valuations made in assessing ‘costs’ resulting from the production of such biofuels.

Indirect land use change (ILUC)


One thorny issue relating to biofuels production has been that of ILUC.  ILUC has been a huge spoke in the wheel of policy-makers’ development of policy in relation to the development of biofuels, not only in the UK, but in the EU, and further afield.  Endeavouring to tackle this issue involves identifying potential knock-on effects resulting from direct land use change to biofuels feedstocks (whether 1st or 2nd generation). These might include increased GHG emissions, erosion, biodiversity loss, or increased insecurity in relation to land rights or food supply of local people.  

While the focus of policy-makers’ concerns in relation to ILUC has to date been GHG emissions, views in relation to all of these issues also depend upon one’s assumptions/framing.  Furthermore, such issues are by their very definition uncertain (because they involve future potential scenarios) and, in tackling each of them, require policy-makers to give value (either positive or negative value) to those potential scenarios.  Some of the values endowed by policy-makers in assessing indirect or direct land use change may be quantifiable.  Others, such as the values given by local people to their landscape before it is transformed for biofuel feedstocks, may not be.  Moreover, land use change resulting from policies made in the UK, may be taking place in countries as far afield as Africa or South East Asia, for example.  

While some participants thought that this demonstrated that even endeavouring to tackle an issue such as ILUC was purely altruistic, and therefore usually not important enough for national policy-makers to be swayed by, others argued that it was not altruism that demanded its recognition, but an appreciation of the integrated nature of our world, its people and environment, and markets for feedstocks.  Without actively sympathising with policy-makers, many participants recognised that there are no right answers when it comes to ILUC.

Need for a holistic approach in policy-making


Image by Steve Jurvetson
When discussion moved on to consider the types of evidence required for policy-makers to tackle the policy problems, we soon realised that different forms of ‘evidence’ were often integrated.  Moreover, it was not lack of evidence that was the problem for policy-makers, or even ambiguity and uncertainty in the evidence, but the appraisal of that evidence.  This requires political decisions to be taken, something that policy-makers seem, ironically, to be distinctly uncomfortable with in relation to this area.

The workshop was a valuable exercise.  To paraphrase one participant: many of the technical or economic issues relating to the development of cellulosic biofuels in the UK could be resolved by taking a very narrow view of the problem.  However, such issues do encompass wider issues.  Countering the scientists’ and engineers’ ‘problem-solving’ approaches to policy issues, with social scientists’ more critical understanding of the social issues surrounding the problems is always going to be a challenge, but one that, I believe, is crucial if those problems are really going to be solved with any success.

This blog is written by Cabot Institute member Dr Elizabeth Fortin, University of Bristol Law School.
Dr Elizabeth Fortin

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c