Skip to main content

A brief introduction to how Bristol's plant science might save the world

Global crop yields of wheat and corn are starting to decline, and the latest report from the Intergovernmental Panel on Climate Change (IPCC) suggests things are only going to get worse.

Last year I looked at previous research into what climate change might mean for global crop yields and found that overall crop yields would remain stable but regional declines could prove devastating for certain parts of the world. The definitive new report from the IPCC finds that actually a temperature rise of just 1°C will have negative impacts on the global yields of wheat, rice and maize, the three major crop plants. Food prices could increase by as much as 84% by 2050, with countries in the tropics being much more badly affected than northern Europe and North America.

All over the world, research is underway to find sustainable ways to feed the growing population. Scientists within the Cabot Institute’s Food Security research theme are working on a range of problems that should help us manage the threat that climate change presents.

Improving crop breeding


The average increase in yields of the world’s most important crops is slowing down, which means that supply is not keeping up with demand. Professor Keith Edwards and Dr. Gary Barker are leading UK research into wheat genomes, developing molecular markers linked to economically important traits. These markers are often Single Nucleotide Polymorphisms (SNPs), which are single letter differences in the DNA code. It's possible to find SNPs linked to areas of the genome associated with disease resistance or increased yield, allowing breeders to rapidly check whether plants have the traits they are looking for.


Wheat is a vital crop for UK agriculture as well as global food security.

Water use in plants


Climate change means that many parts of the world will face extreme weather events like droughts. Clean, fresh water is already an increasingly valuable resource and is predicted to be a major source of global conflict in the future.

Plants produce microscopic pores known as stomata on their leaves and stems, which open to take in carbon dioxide for photosynthesis but close in drought conditions to prevent excess water loss from the plant. Professor Alistair Hetherington's group looks at the environmental conditions that affect stomatal formation and function, which will help to determine how droughts or higher carbon dioxide levels might affect crop productivity in the future and how we might enhance their water use efficiency.

Professor Claire Grierson's group are working on root development, another important factor in managing how plants use water. Plants produce elongated root hairs which extend out into the substrate, increasing the root surface area in order to absorb more water and nutrients. If we can understand how root hairs are produced, we may be able to breed plants with even more efficient roots, able to extract enough water from nearly-dry soil in periods of low rainfall.

Each root hair is a single elongated cell that hugely increases a plant's ability to take up water.

Preventing disease


Mycosphaerella graminicola is a wheat
pathogen that greatly reduces yield,
posing the biggest risk to wheat production worldwide.
A particular concern of climate change is that diseases may spread to new areas or be more destructive than they used to be. Professor Gary Foster and Dr. Andy Bailey are leading research into a variety of fungal and viral plant pathogens, which are responsible for devastating crop yields around the world. They use new molecular techniques to determine exactly how diseases begin and what treatments are effective against them, information that will be vital as plant disease patterns change across the world.

Crop pollination


It is still unclear whether climate change is affecting bees, however some research suggests that flowers requiring pollination are getting out of sync with bees and other pollinators. This might not be a problem for wind-pollinated crops like maize and barley, or self-pollinators like wheat and rice, however most fruits and oil crops rely on pollinators to transfer pollen from plant to plant. Dr. Heather Whitney researches the interaction between plants and their pollinators, particularly focussing on how petal structure, glossiness and iridescence can attract foraging bees.

Plants in a warmer world


Infra red cameras can sense differences in plant
responses to temperature. Credit: Dr. Keara Franklin
As the planet warms, the IPCC has shown that there will be an overall decrease in crop productivity. Climate change has had an overall negative impact on crops in the past 10 years, with extreme droughts and flooding leading to rapid price spikes, especially in wheat. Dr. Kerry Franklin is investigating the interaction between light and temperature responses in plants. High temperatures induce a similar reaction in plants to that of shade; plants elongate, bend their leaves upwards and flower early, which is likely to reduce their overall yield. We need to understand the benefits and costs of plant responses to temperature, and look  for alternative growing approaches to maintain and hopefully even increase crop yields in a warmer world.

What does the future hold?


The IPCC report shows that if nothing changes, we are rapidly heading towards a global catastrophe. Food production will drop, which combined with the increasing population means that billions of people could face starvation. The IPCC is keen to highlight that new ways of growing and distributing food may mitigate some of the consequences that we can no longer avoid, and a key part of that is understanding how plants (and their pathogens) will respond to changes in temperature, water availability and increases in CO2. 

The research by some of the University of Bristol's plant scientists, highlighted above, should provide important knowledge that plant breeders can utilise to develop and grow crops more suited to the daunting world that climate change will present. 

This blog is written by Sarah JoseCabot Institute, Biological Sciences, University of Bristol
You can follow Sarah on Twitter @JoseSci 
Sarah Jose

Popular posts from this blog

Are you a journalist looking for climate experts? We've got you covered

We've got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via  Victoria Tagg , our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489. Climate change / climate emergency / climate science / climate-induced disasters Dr Eunice Lo - expert in changes in extreme weather events such as heatwaves and cold spells , and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate . Professor Daniela Schmidt - expert in the causes and effects of climate change on marine systems . Dani is also a Lead Author on the IPCC reports. Dani will be at COP26. Dr Katerina Michalides - expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_k

Urban gardens are crucial food sources for pollinators - here’s what to plant for every season

A bumblebee visits a blooming honeysuckle plant. Sidorova Mariya | Shutterstock Pollinators are struggling to survive in the countryside, where flower-rich meadows, hedges and fields have been replaced by green monocultures , the result of modern industrialised farming. Yet an unlikely refuge could come in the form of city gardens. Research has shown how the havens that urban gardeners create provide plentiful nectar , the energy-rich sugar solution that pollinators harvest from flowers to keep themselves flying. In a city, flying insects like bees, butterflies and hoverflies, can flit from one garden to the next and by doing so ensure they find food whenever they need it. These urban gardens produce some 85% of the nectar found in a city. Countryside nectar supplies, by contrast, have declined by one-third in Britain since the 1930s. Our new research has found that this urban food supply for pollinators is also more diverse and continuous

#CabotNext10 Spotlight on City Futures

In conversation with Dr Katharina Burger, theme lead at the Cabot Institute for the Environment. Dr Katharina Burger Why did you choose to become a theme leader at Cabot Institute ? I applied to become a Theme Leader at Cabot, a voluntary role, to bring together scientists from different faculties to help us jointly develop proposals to address some of the major challenges facing our urban environments. My educational background is in Civil Engineering at Bristol and I am now in the School of Management, I felt that this combination would allow me to build links and communicate across different ways of thinking about socio-technical challenges and systems. In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one) The biggest challenge is to evolve environmentally sustainable, resilient, socially inclusive, safe and violence-free and economically productive cities. The following areas are part of this c